-
High-resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at solid surfaces. A monochromatic electron beam incident on the crystal surface may interact with the vibrations of adsorbed molecules, surface phonons or electronic excitations before being back-scattered. By analyzing the energy and momentum of the scattered electrons, we can obtain the information about the chemical bonds, lattice dynamics, occupation of electronic states, and surface plasmons. However the application of traditional HREELS to dispersion analyses is restricted by its point-by-point measurement of the energy loss spectrum for each momentum. Recently, a new strategy for HREELS was realized by utilizing a specially designed lens system with a double-cylindrical monochromator combined with a commercial Scienta hemispherical electron energy analyzer, which can be used to simultaneously measure the energy and momentum of the scattered electrons. The new system possesses improved momentum resolution, high detecting efficiency and high sampling density with no loss in energy resolution. The new HREELS system was employed to study the mechanism of the superconductivity enhancement at FeSe/SrTiO3 interface. By surface phonon measurements on samples with different film thickness, it is revealed that the electric field associated with phonon modes of SrTiO3 substrate can penetrate into FeSe film and interact with the electrons therein, playing the key role in the superconductivity enhancement. The surface collective modes of three-dimensional topological insulator was also studied by using this new HREELS system. A highly unusual acoustic plasmon mode is revealed on the surface of a typical three-dimensional topological insulator Bi2Se3. This mode exhibits an almost linear dispersion to the second Brouillion zone center without reflecting lattice periodicity, and it remains prominent over a large momentum range, with unusually weak damping unseen in any other system. This observation indicates that the topological protection exists not only in single-particle topological states but also in their collective excitations. The application of the new HREELS system with the ability to measure large momentum range with high-efficiency, will definitely promote the development of related researches on condensed matter physics.
-
Keywords:
- high resolution electron energy loss spectroscopy /
- interfacial supercondutivity enhancement /
- surface plasmon /
- electron-phonon coupling
[1] Egerton R F 2011 Electron Energy-Loss Spectroscopy in the Electron Microscope (3rd Ed.) (New York:Springer US) pp1-26
[2] Lagos M J, Trugler A, Hohenester U, Batson P E 2017 Nature 543 529
[3] Ibach H, Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York:Academic Press) pp1-20
[4] Qin H J, Shi J R, Cao Y W, Wu K H, Zhang J D, Plummer E W, Wen J, Xu Z J, Gu G D, Guo J D 2010 Phys. Rev. Lett. 105 256402
[5] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, Macdougall G J, Chiang T C, Fradkin E 2017 Science 358 1314
[6] Zhu X, Cao Y, Zhang S, Jia X, Guo Q, Yang F, Zhu L, Zhang J, Plummer E W, Guo J 2015 Rev. Sci. Instrum. 86 083902
[7] Valla T, Fedorov A V, Johnson P D, Wells B O, HulbertS L, Li Q, Gu G D, Koshizuka N 1999 Science 285 2110
[8] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473
[9] Fadley C S 2010 J. Electron Spectrosc. Relat. Phenom. 178 2
[10] Ibach H 1991 Electron Energy Loss Spectrometers-The Technology of High Performance (Vol. 63) (Berlin:Springer-Verlag) pp131-146
[11] Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29 037402
[12] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C 2008 Proc. Natl. Acad. Sci. USA 105 14262
[13] Bozovic I, Ahn C 2014 Nat. Phys. 10 892
[14] Wang L, Ma X, Xue Q 2016 Supercond Sci. Technol. 29 123001
[15] Wang Z, Liu C, Liu Y, Wang J 2017 J. Phys.:Condens. Matter 29 153001
[16] Huang D, Hoffman J E 2017 Annual Rev. Condens. Matter Phys. 8 311
[17] Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2016 Nat. Phys. 12 42
[18] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002
[19] Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2016 Proc. Natl. Acad. Sci. USA 113 3986
[20] Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775
[21] Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nat. Commun. 7 10840
[22] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325
[23] Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608
[24] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245
[25] Zhang P, Peng X L, Qian T, Richard P, Shi X, Ma J Z, Fu B B, Guo Y L, Han Z Q, Wang S C, Wang L L, Xue Q K, Hu J P, Sun Y J, Ding H 2016 Phys. Rev. B 94 104510
[26] Zhou G, Zhang D, Liu C, Tang C, Wang X, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q 2016 Appl. Phys. Lett. 108 202603
[27] Ding H, L Y, Zhao K, Wang W, Wang L, Song C, Chen X, Ma X, Xue Q 2016 Phys. Rev. Lett. 117 067001
[28] Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, Shen Z X 2017 Phys. Rev. Lett. 118 067002
[29] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044
[30] Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X, Guo J 2018 Phys. Rev. B 97 035408
[31] Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D, Vasiliev A 2013 Phys. Rev. B 87 144508
[32] Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X, Guo J 2016 Phys. Rev. B 94 081116
[33] Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969
[34] Pines D, Bohm D 1952 Phys. Rev. 85 338
[35] Ritchie R H 1957 Phys. Rev. 106 874
[36] Landau L 1957 Soviet Physics Jetp-Ussr 3 920
[37] Pines D, Nozires P 1966 The Theory of Quantum Liquids:Normal Fermi Liquids (Vol. 1) (New York:Benjamin Inc.)
[38] Ninham B W, Powell C J, Swanson N 1966 Phys. Rev. 145 209
[39] Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403
[40] Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J, Yazdani A 2009 Nature 460 1106
[41] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X, Xue Q K 2009 Phys. Rev. Lett. 103 266803
[42] Das Sarma S, Hwang E H 2009 Phys. Rev. Lett. 102 206412
[43] Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401
[44] Kogar A, Vig S, Thaler A, Wong M H, Xiao Y, Reig I P D, Cho G Y, Valla T, Pan Z, Schneeloch J, Zhong R, Gu G D, Hughes T L, MacDougall G J, Chiang T C, Abbamonte P 2015 Phys. Rev. Lett. 115 257402
[45] Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S, Calvani P, Lupi S 2013 Nat. Nano 8 556
[46] Autore M, Engelkamp H, D'Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S 2015 ACS Photon. 2 1231
[47] Politano A, Silkin V M, Nechaev I A, Vitiello M S, Viti L, Aliev Z S, Babanly M B, Chiarello G, Echenique P M, Chulkov E V 2015 Phys. Rev. Lett. 115 216802
[48] Glinka Y D, Babakiray S, Johnson T A, Holcomb M B, Lederman D 2016 Nat. Commun. 7 13054
[49] Zhang F, Zhou J, Xiao D, Yao Y 2017 Phys. Rev. Lett. 119 266804
[50] Jia X, Zhang S Y, Sankar R, Chou F C, Wang W H, Kempa K, Plummer E W, Zhang J D, Zhu X T, Guo J D 2017 Phys. Rev. Lett. 119 136805
[51] Zhu X, Santos L, Sankar R, Chikara S, Howard C, Chou F C, Chamon C, El-Batanouny M 2011 Phys. Rev. Lett. 107 186102
[52] Zhu X, Santos L, Howard C, Sankar R, Chou F C, Chamon C, El-Batanouny M 2012 Phys. Rev. Lett. 108 185501
-
[1] Egerton R F 2011 Electron Energy-Loss Spectroscopy in the Electron Microscope (3rd Ed.) (New York:Springer US) pp1-26
[2] Lagos M J, Trugler A, Hohenester U, Batson P E 2017 Nature 543 529
[3] Ibach H, Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York:Academic Press) pp1-20
[4] Qin H J, Shi J R, Cao Y W, Wu K H, Zhang J D, Plummer E W, Wen J, Xu Z J, Gu G D, Guo J D 2010 Phys. Rev. Lett. 105 256402
[5] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, Macdougall G J, Chiang T C, Fradkin E 2017 Science 358 1314
[6] Zhu X, Cao Y, Zhang S, Jia X, Guo Q, Yang F, Zhu L, Zhang J, Plummer E W, Guo J 2015 Rev. Sci. Instrum. 86 083902
[7] Valla T, Fedorov A V, Johnson P D, Wells B O, HulbertS L, Li Q, Gu G D, Koshizuka N 1999 Science 285 2110
[8] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473
[9] Fadley C S 2010 J. Electron Spectrosc. Relat. Phenom. 178 2
[10] Ibach H 1991 Electron Energy Loss Spectrometers-The Technology of High Performance (Vol. 63) (Berlin:Springer-Verlag) pp131-146
[11] Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29 037402
[12] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C 2008 Proc. Natl. Acad. Sci. USA 105 14262
[13] Bozovic I, Ahn C 2014 Nat. Phys. 10 892
[14] Wang L, Ma X, Xue Q 2016 Supercond Sci. Technol. 29 123001
[15] Wang Z, Liu C, Liu Y, Wang J 2017 J. Phys.:Condens. Matter 29 153001
[16] Huang D, Hoffman J E 2017 Annual Rev. Condens. Matter Phys. 8 311
[17] Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2016 Nat. Phys. 12 42
[18] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002
[19] Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2016 Proc. Natl. Acad. Sci. USA 113 3986
[20] Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775
[21] Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nat. Commun. 7 10840
[22] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325
[23] Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608
[24] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245
[25] Zhang P, Peng X L, Qian T, Richard P, Shi X, Ma J Z, Fu B B, Guo Y L, Han Z Q, Wang S C, Wang L L, Xue Q K, Hu J P, Sun Y J, Ding H 2016 Phys. Rev. B 94 104510
[26] Zhou G, Zhang D, Liu C, Tang C, Wang X, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q 2016 Appl. Phys. Lett. 108 202603
[27] Ding H, L Y, Zhao K, Wang W, Wang L, Song C, Chen X, Ma X, Xue Q 2016 Phys. Rev. Lett. 117 067001
[28] Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, Shen Z X 2017 Phys. Rev. Lett. 118 067002
[29] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044
[30] Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X, Guo J 2018 Phys. Rev. B 97 035408
[31] Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D, Vasiliev A 2013 Phys. Rev. B 87 144508
[32] Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X, Guo J 2016 Phys. Rev. B 94 081116
[33] Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969
[34] Pines D, Bohm D 1952 Phys. Rev. 85 338
[35] Ritchie R H 1957 Phys. Rev. 106 874
[36] Landau L 1957 Soviet Physics Jetp-Ussr 3 920
[37] Pines D, Nozires P 1966 The Theory of Quantum Liquids:Normal Fermi Liquids (Vol. 1) (New York:Benjamin Inc.)
[38] Ninham B W, Powell C J, Swanson N 1966 Phys. Rev. 145 209
[39] Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403
[40] Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J, Yazdani A 2009 Nature 460 1106
[41] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X, Xue Q K 2009 Phys. Rev. Lett. 103 266803
[42] Das Sarma S, Hwang E H 2009 Phys. Rev. Lett. 102 206412
[43] Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401
[44] Kogar A, Vig S, Thaler A, Wong M H, Xiao Y, Reig I P D, Cho G Y, Valla T, Pan Z, Schneeloch J, Zhong R, Gu G D, Hughes T L, MacDougall G J, Chiang T C, Abbamonte P 2015 Phys. Rev. Lett. 115 257402
[45] Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S, Calvani P, Lupi S 2013 Nat. Nano 8 556
[46] Autore M, Engelkamp H, D'Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S 2015 ACS Photon. 2 1231
[47] Politano A, Silkin V M, Nechaev I A, Vitiello M S, Viti L, Aliev Z S, Babanly M B, Chiarello G, Echenique P M, Chulkov E V 2015 Phys. Rev. Lett. 115 216802
[48] Glinka Y D, Babakiray S, Johnson T A, Holcomb M B, Lederman D 2016 Nat. Commun. 7 13054
[49] Zhang F, Zhou J, Xiao D, Yao Y 2017 Phys. Rev. Lett. 119 266804
[50] Jia X, Zhang S Y, Sankar R, Chou F C, Wang W H, Kempa K, Plummer E W, Zhang J D, Zhu X T, Guo J D 2017 Phys. Rev. Lett. 119 136805
[51] Zhu X, Santos L, Sankar R, Chikara S, Howard C, Chou F C, Chamon C, El-Batanouny M 2011 Phys. Rev. Lett. 107 186102
[52] Zhu X, Santos L, Howard C, Sankar R, Chou F C, Chamon C, El-Batanouny M 2012 Phys. Rev. Lett. 108 185501
Catalog
Metrics
- Abstract views: 7338
- PDF Downloads: 402
- Cited By: 0