Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-color photoassociation spectra of ultra-cold Cs (60D5/2)2 Rydberg molecule

Bai Jing-Xu Han Xiao-Xuan Bai Su-Ying Jiao Yue-Chun Zhao Jian-Ming Jia Suo-Tang

Citation:

Two-color photoassociation spectra of ultra-cold Cs (60D5/2)2 Rydberg molecule

Bai Jing-Xu, Han Xiao-Xuan, Bai Su-Ying, Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The long-range multipole interactions between ultra-cold Rydberg atoms form adiabatic potentials, one of which shows a binding potential that can be used to bind Rydberg-Rydberg molecules. Rydberg-atom molecule, known as macrodimer due to its larger size (~μm), has the properties of the abundant vibrational energy levels and large electric dipole moment and so on. Compared with Rydberg atom, the Rydberg molecule, including Rydberg-ground molecule and Rydberg-Rydberg molecule, is susceptible to manipulate by an external field and possesses potential applications in the weak-signal detection, the quantum gas correlation measurement and the vacuum fluctuation and so on.
    In this paper, we investigate a (60D5/2)2 Rydberg macrodimer theoretically and experimentally. In the calculation, we take into account the multipole interaction of a Rydberg-atom pair, including dipole-dipole, dipole-quadrupole, dipole-octupole and quadrupole-quadrupole interaction and so on. The adiabatic potential of 60D5/2 Rydberg-atom pair is obtained by diagonalizing the interaction Hamiltonian on a grid of internuclear separations, R. The potential depth and binding length of the Rydberg molecular potential well are obtained. In experiment, we prepare the ultra-cold Cs (60D5/2)2 Rydberg molecules by a two-color photoassociation method in a cesium ultracold atom trap. The first-color (pulse-A) resonantly excites a seed Rydberg atom A, and the second color (pulse-B) is detuned and resonantly excites the second Rydberg atom B near to the atom A. Both pulse-A and pulse-B are two-photon excitations (852 nm + 510 nm), between which their 852-nm lasers have the same frequency, whereas the 510-nm laser frequency of the pulse-A is set to be resonant with the atomic transition and the frequency of the pulse-B is detuned by using a double-passed acousto-optic modulator. When the pulse-B is detuned to the molecular binding energy, atom-A and-B are bonded, forming an ultra-cold Cs (60D5/2)2 Rydberg molecule. The two-color photoassociation spectra of Rydberg-Rydberg molecules are detected by the field ionization of Rydberg atoms and molecules with a ramped electric field. Molecular spectra are compared with calculated adiabatic molecular potentials, which yields the binding energy and equilibrium internuclear distance. The two-color photoassociation method used in this work has a doubly resonant character that results in the enhanced excitation rate.
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Nature Science Foundation of China (Grant Nos. 61475090, 61675123, 61775124, 11804202), the Key Program of the National Natural Science Foundation of China (Grant No. 11434007, 61835007), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70), and the "1331 Project" of Shanxi Province, China.
    [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp11-47

    [2]

    Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003

    [3]

    Gurian J H, Cheinet P, Huillery P, Fioretti A, Zhao J, Gould P L, Comparat D, Pillet P 2012 Phys. Rev. Lett. 108 023005

    [4]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [5]

    Jiao Y, Han X, Yang Z, Li J, Raithel G, Zhao J, Jia S 2016 Phys. Rev. A 94 023832

    [6]

    Jiao Y, Hao L, Han X, Bai S, Raithel G, Zhao J, Jia S 2017 Phys. Rev. Appl. 8 014028

    [7]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Côté R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001

    [8]

    Singer K, Reetz-Lamour M, Amthor T, Marcassa L G, Weidemüller M 2004 Phys. Rev. Lett. 93 163001

    [9]

    Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [10]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [11]

    Peyronel T, Firstenberg O, Liang Q, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [12]

    Boisseau C, Simbotin I, Côté R 2002 Phys. Rev. Lett. 88 133004

    [13]

    Overstreet K R, Schwettmann A, Tallant J, Booth D, Shaffer J P 2009 Nat. Phys. 5 581

    [14]

    Deiglmayr J, Saßmannshausen H, Pillet P, Merkt F 2014 Phys. Rev. Lett. 113 193001

    [15]

    Saßmannshausen H, Deiglmayr J 2016 Phys. Rev. Lett. 117 083401

    [16]

    Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458

    [17]

    Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B 35 L199

    [18]

    Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709

    [19]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005

    [20]

    Bendkowsky V, Butscher B, Nipper J, Balewski J B, Shaffer J P, Löw R, Pfau T, Li W, Stanojevic J, Pohl T, Rost J M 2010 Phys. Rev. Lett. 105 163201

    [21]

    Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L, Stwalley W C 2013 Phys. Rev. Lett. 111 053001

    [22]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201

    [23]

    Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008

    [24]

    Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020

    [25]

    Ford L H, Roman T A 2011 Ann. Phys. 326 2294

    [26]

    Menezes G, Svaiter N F 2015 Phys. Rev. A 92 062131

    [27]

    Born M, Oppenheimer J R 1927 Ann. Phys. 84 457

    [28]

    Le Roy R J 1974 Can. J. Phys. 52 246

    [29]

    Schwettmann A, Crawford J, Overstreet K R, Shaffer J P 2006 Phys. Rev. A 74 020701

    [30]

    Han X, Bai S, Jiao Y, Hao L, Xue Y, Zhao J, Jia S, Raithel G 2018 Phys. Rev. A 97 031403

    [31]

    Deiglmayr J 2016 Phys. Scr. 91 104007

    [32]

    Han X, Bai S, Jiao Y, Raithel G, Zhao J, Jia S 2018 arXiv:1806.04043ν1 [physics.atom-ph]

    [33]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [34]

    Jiao Y, Li J, Wang L, Zhang H, Zhang L, Zhao J, Jia S 2016 Chin. Phys. B 25 053201

  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp11-47

    [2]

    Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, Pillet P 2006 Phys. Rev. Lett. 97 083003

    [3]

    Gurian J H, Cheinet P, Huillery P, Fioretti A, Zhao J, Gould P L, Comparat D, Pillet P 2012 Phys. Rev. Lett. 108 023005

    [4]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [5]

    Jiao Y, Han X, Yang Z, Li J, Raithel G, Zhao J, Jia S 2016 Phys. Rev. A 94 023832

    [6]

    Jiao Y, Hao L, Han X, Bai S, Raithel G, Zhao J, Jia S 2017 Phys. Rev. Appl. 8 014028

    [7]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Côté R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001

    [8]

    Singer K, Reetz-Lamour M, Amthor T, Marcassa L G, Weidemüller M 2004 Phys. Rev. Lett. 93 163001

    [9]

    Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [10]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [11]

    Peyronel T, Firstenberg O, Liang Q, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [12]

    Boisseau C, Simbotin I, Côté R 2002 Phys. Rev. Lett. 88 133004

    [13]

    Overstreet K R, Schwettmann A, Tallant J, Booth D, Shaffer J P 2009 Nat. Phys. 5 581

    [14]

    Deiglmayr J, Saßmannshausen H, Pillet P, Merkt F 2014 Phys. Rev. Lett. 113 193001

    [15]

    Saßmannshausen H, Deiglmayr J 2016 Phys. Rev. Lett. 117 083401

    [16]

    Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458

    [17]

    Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B 35 L199

    [18]

    Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709

    [19]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005

    [20]

    Bendkowsky V, Butscher B, Nipper J, Balewski J B, Shaffer J P, Löw R, Pfau T, Li W, Stanojevic J, Pohl T, Rost J M 2010 Phys. Rev. Lett. 105 163201

    [21]

    Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L, Stwalley W C 2013 Phys. Rev. Lett. 111 053001

    [22]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201

    [23]

    Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008

    [24]

    Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020

    [25]

    Ford L H, Roman T A 2011 Ann. Phys. 326 2294

    [26]

    Menezes G, Svaiter N F 2015 Phys. Rev. A 92 062131

    [27]

    Born M, Oppenheimer J R 1927 Ann. Phys. 84 457

    [28]

    Le Roy R J 1974 Can. J. Phys. 52 246

    [29]

    Schwettmann A, Crawford J, Overstreet K R, Shaffer J P 2006 Phys. Rev. A 74 020701

    [30]

    Han X, Bai S, Jiao Y, Hao L, Xue Y, Zhao J, Jia S, Raithel G 2018 Phys. Rev. A 97 031403

    [31]

    Deiglmayr J 2016 Phys. Scr. 91 104007

    [32]

    Han X, Bai S, Jiao Y, Raithel G, Zhao J, Jia S 2018 arXiv:1806.04043ν1 [physics.atom-ph]

    [33]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [34]

    Jiao Y, Li J, Wang L, Zhang H, Zhang L, Zhao J, Jia S 2016 Chin. Phys. B 25 053201

  • [1] Jiao Yue-Chun, Bai Jing-Xu, Song Rong, Han Xiao-Xuan, Zhao Jian-Ming. Preparation of ultra-cold (36D5/2+ 6S1/2) Rydberg molecule and measurement of its permanent electric dipole moment. Acta Physica Sinica, 2023, 72(3): 033202. doi: 10.7498/aps.72.20221865
    [2] Bai Su-Ying, Han Xiao-Xuan, Hao Li-Ping, Jiao Yue-Chun, Zhao Jian-Ming. Photoassociation spectra of cesium 31D5/2+6S1/2(F = 4) ultralong-range Rydberg molecules. Acta Physica Sinica, 2023, 72(14): 143201. doi: 10.7498/aps.72.20230520
    [3] Bai Su-Ying, Bai Jing-Xu, Han Xiao-Xuan, Jiao Yue-Chun, Zhao Jian-Ming. Ultra-cold long-range Rydberg-ground molecules. Acta Physica Sinica, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [4] Lu Bo, Wang Da-Jun. Ultracold dipolar molecules. Acta Physica Sinica, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [5] Qin Yan, Li Sheng-Chang. Adiabatic conversion of ultracold atoms into molecules via square-shaped pulse field. Acta Physica Sinica, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [6] Li Chen-Xi, Guo Ying-Chun, Wang Bing-Bing. Ab initio calculation of the potential curve of B3u- state of O2. Acta Physica Sinica, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [7] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [8] Ma Jie, Wang Xiao-Feng, Xin Tong-Yu, Liu Wen-Liang, Li Yu-Qing, Wu Ji-Zhou, Xiao Lian-Tuan, Jia Suo-Tang. High sensitive photoassociation spectroscopy investigation on 0u+ (6P3/2) long-range state of ultracold cesium molecules. Acta Physica Sinica, 2015, 64(15): 153303. doi: 10.7498/aps.64.153303
    [9] Hu Chen-Yang, Liu Wen-Liang, Xu Run-Dong, Wu Ji-Zhou, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Direct measurement of the rotational constant of 0u+(6S1/2+6P1/2) long-range state via double-pass spectroscopy. Acta Physica Sinica, 2015, 64(14): 143302. doi: 10.7498/aps.64.143302
    [10] Han Xiao-Xuan, Zhao Jian-Ming, Li Chang-Yong, Jia Suo-Tang. Potentials of long-range cesium Rydberg molecule. Acta Physica Sinica, 2015, 64(13): 133202. doi: 10.7498/aps.64.133202
    [11] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [12] Wang Wen-Bao, Yu Kun, Zhang Xiao-Mei, Liu Yu-Fang. Ab initio calculation of the potential energy curves and spectroscopic properties of BP molecule. Acta Physica Sinica, 2014, 63(7): 073302. doi: 10.7498/aps.63.073302
    [13] Zhao Yan-Ting, Yuan Jin-Peng, Ji Zhong-Hua, Li Zhong-Hao, Meng Teng-Fei, Liu Tao, Xiao Lian-Tuan, Jia Suo-Tang. The temperature measurement for the ultracold Cs2 molecules formed by photoassociation. Acta Physica Sinica, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [14] Chen Heng-Jie. Potential energy curves and vibrational levels of ground and excited states of LiAl. Acta Physica Sinica, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [15] Wang Yong, Zhang Hao, Chen Jie, Wang Li-Mei, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. State transfer of ultracold nS Rydberg atoms. Acta Physica Sinica, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] Li Guan-Qiang, Peng Ping, Cao Zhen-Zhou, Xue Ju-Kui. Adiabatic conversion from ultracold atoms to heteronuclear tetrameric molecule A3B. Acta Physica Sinica, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [17] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] Lu Guang-Hui, Sun Wei-Guo, Feng Hao. Studies on the potential energy curves of hydride diatomic molecules using energy consistent method. Acta Physica Sinica, 2004, 53(6): 1753-1758. doi: 10.7498/aps.53.1753
    [19] Li Xin-Xi, Sun Wei-Guo, Feng Hao. Studies on the potential energy curves of heteronuclear diatomic molecules using energy consistent method. Acta Physica Sinica, 2003, 52(2): 307-311. doi: 10.7498/aps.52.307
    [20] WEN JING, SUN WEI-GUO, FENG HAO. STUDY ON THE POTENTIAL ENERGY CURVES OF ALKALI DIATOMIC MOLECULES WITH ENERGY CO NSISTENT METHOD. Acta Physica Sinica, 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
Metrics
  • Abstract views:  5358
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2018
  • Accepted Date:  21 October 2018
  • Published Online:  05 December 2018

/

返回文章
返回