搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从头计算研究BP分子的势能曲线和光谱性质

王文宝 于坤 张晓美 刘玉芳

引用本文:
Citation:

从头计算研究BP分子的势能曲线和光谱性质

王文宝, 于坤, 张晓美, 刘玉芳

Ab initio calculation of the potential energy curves and spectroscopic properties of BP molecule

Wang Wen-Bao, Yu Kun, Zhang Xiao-Mei, Liu Yu-Fang
PDF
导出引用
  • 利用高精度的量子化学从头计算MRCI+Q方法结合相关一致aug-cc-pVQZ基组计算了磷化硼分子X3,3-,5和5-态的势能曲线,计算所得的电子态在大键长位置处收敛于同一个离解极限B(2Pu)+P(4Su). 为了得到更精确的结果,计算中首次纳入了旋轨耦合(SOC)效应,使得BP分子的4个-S态分裂成为15个态,其中30+ 态被确定为基态. 此外,SOC效应还使两个三重态X3和3-分裂出的0+和1态的势能曲线产生了避免交叉,表明在当前的计算中考虑SOC效应是非常必要的. 利用LEVEL8.0程序对计算所得的-S态和态的势能曲线进行拟合,得到了相应的光谱常数,通过与其他理论和实验工作进行比较,可知我们的结果更加精确、完整,可以为实验和理论方面进一步研究BP分子的光谱性质提供可靠的参考.
    A high-precision quantum chemistry ab initio multi-reference configuration interaction method with aug-cc-pVQZ basis sets has been used to calculate the four states of BP molecule. The four -S states are X3, 3-, 5 and 5-, which are correlated to the lowest dissociation limit of B(2Pu)+P(4Su). Analysis of the electronic structures of -S states shows that the -S electronic states are essentially multi-configurational. We take the spin-orbit interaction into account for the first time so far as we know, which makes the four -S states split into fifteen states. 30+ state is confirmed to be the ground state. The SOC effect is essential for the BP molecule, which leads to the avoided crossings for 0+ and 1 states from X3 and 3-. Based on the PECs of -S and states, the accurate spectroscopic constants are obtained by solving the radial Schrdinger equation. The spectroscopic results may be conducive to further research on BP molecule in experiment and theory.
    • 基金项目: 国家自然科学基金(批准号:11274096)和河南省高校科技创新团队(批准号:13IRTSTHN016)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274096), and the University Science and Technology Innovation Team Support Project of Henan Province, China (Grant no. 13IRTSTHN016).
    [1]

    Zhang G F 1995 Infrared Technology 5 23 (in Chinese)[张贵锋1995 红外技术5 23]

    [2]

    Min X M, Cai K F, Nan C W 1998 Chinese Journal of Computation Phsics 15 445 (in Chinese) [闵新民, 蔡克峰, 南策文1998 计算物理15 445]

    [3]

    Gingerich K A 1972 The Journal of Chemical Physics 56 4239

    [4]

    Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149

    [5]

    Gan Z T, Grant D J, Harrison R J, Dixon D A 2006 J. Chem. Phys. 125 124311

    [6]

    Linguerri R, Komiha N, Oswald R, Mitrushchenkov A, Rosmus P 2008 Chem. Phys. 346 1

    [7]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 物理学报58 6873]

    [8]

    Li R, Lian K Y, Li Q N, Miao F J, Yan B, Jin M X 2012 Chin. Phys. B 21 123102

    [9]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [10]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663

    [11]

    Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [12]

    Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259

    [13]

    Werner H-J, Knowles P J 1985 J. Chem. Phys. 89 5803

    [14]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514

    [15]

    Berning A, Schweizer M, Werner H-J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [16]

    Yu K, Zhang X M, Liu Y F 2013 Acta Phys. Sin. 62 063301 (in Chinese) [于坤, 张晓美, 刘玉芳2013 物理学报 62 063301]

    [17]

    Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)

  • [1]

    Zhang G F 1995 Infrared Technology 5 23 (in Chinese)[张贵锋1995 红外技术5 23]

    [2]

    Min X M, Cai K F, Nan C W 1998 Chinese Journal of Computation Phsics 15 445 (in Chinese) [闵新民, 蔡克峰, 南策文1998 计算物理15 445]

    [3]

    Gingerich K A 1972 The Journal of Chemical Physics 56 4239

    [4]

    Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149

    [5]

    Gan Z T, Grant D J, Harrison R J, Dixon D A 2006 J. Chem. Phys. 125 124311

    [6]

    Linguerri R, Komiha N, Oswald R, Mitrushchenkov A, Rosmus P 2008 Chem. Phys. 346 1

    [7]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 物理学报58 6873]

    [8]

    Li R, Lian K Y, Li Q N, Miao F J, Yan B, Jin M X 2012 Chin. Phys. B 21 123102

    [9]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [10]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663

    [11]

    Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [12]

    Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259

    [13]

    Werner H-J, Knowles P J 1985 J. Chem. Phys. 89 5803

    [14]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514

    [15]

    Berning A, Schweizer M, Werner H-J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [16]

    Yu K, Zhang X M, Liu Y F 2013 Acta Phys. Sin. 62 063301 (in Chinese) [于坤, 张晓美, 刘玉芳2013 物理学报 62 063301]

    [17]

    Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)

  • [1] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS电子基态及激发态势能曲线和振动能级的理论研究. 物理学报, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [2] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [3] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [4] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [5] 郝丹辉, 孔凡杰, 蒋刚. PuNO分子结构与势能函数. 物理学报, 2015, 64(15): 153103. doi: 10.7498/aps.64.153103
    [6] 韩小萱, 赵建明, 李昌勇, 贾锁堂. 长程铯里德堡分子的势能曲线. 物理学报, 2015, 64(13): 133202. doi: 10.7498/aps.64.133202
    [7] 李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏. HF+离子在旋轨耦合作用下电子态的特性. 物理学报, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [8] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [9] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [10] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [12] 韩晓琴, 肖夏杰, 刘玉芳. OH, OCI, HOCI(1A')的从头算与势能曲线. 物理学报, 2012, 61(16): 163101. doi: 10.7498/aps.61.163101
    [13] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [14] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [15] 孔凡杰, 杜际广, 蒋 刚. PdCO分子结构与势能函数. 物理学报, 2008, 57(1): 149-154. doi: 10.7498/aps.57.149
    [16] 鲁光辉, 孙卫国, 冯 灏. 氢化物双原子分子势能曲线的能量自洽法研究. 物理学报, 2004, 53(6): 1753-1758. doi: 10.7498/aps.53.1753
    [17] 李新喜, 孙卫国, 冯 灏. 用能量自洽法研究异核双原子分子的势能曲线. 物理学报, 2003, 52(2): 307-311. doi: 10.7498/aps.52.307
    [18] 薛卫东, 王红艳, 朱正和, 张广丰, 邹乐西, 陈长安, 孙颖. CUO分子结构与势能函数. 物理学报, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
    [19] 文 静, 孙卫国, 冯 灏. 用能量自洽法研究碱金属双原子分子的势能曲线. 物理学报, 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
    [20] 阎宏, 常哲, 郭汉英. q变形转动振子模型(Ⅰ)——q振子与双原子分子振动谱. 物理学报, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
计量
  • 文章访问数:  4495
  • PDF下载量:  731
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-25
  • 修回日期:  2014-01-01
  • 刊出日期:  2014-04-05

从头计算研究BP分子的势能曲线和光谱性质

  • 1. 河南师范大学物理与电子工程学院, 新乡 453007;
  • 2. 兴义民族师范学院物理与工程技术学院, 兴义 562400
    基金项目: 国家自然科学基金(批准号:11274096)和河南省高校科技创新团队(批准号:13IRTSTHN016)资助的课题.

摘要: 利用高精度的量子化学从头计算MRCI+Q方法结合相关一致aug-cc-pVQZ基组计算了磷化硼分子X3,3-,5和5-态的势能曲线,计算所得的电子态在大键长位置处收敛于同一个离解极限B(2Pu)+P(4Su). 为了得到更精确的结果,计算中首次纳入了旋轨耦合(SOC)效应,使得BP分子的4个-S态分裂成为15个态,其中30+ 态被确定为基态. 此外,SOC效应还使两个三重态X3和3-分裂出的0+和1态的势能曲线产生了避免交叉,表明在当前的计算中考虑SOC效应是非常必要的. 利用LEVEL8.0程序对计算所得的-S态和态的势能曲线进行拟合,得到了相应的光谱常数,通过与其他理论和实验工作进行比较,可知我们的结果更加精确、完整,可以为实验和理论方面进一步研究BP分子的光谱性质提供可靠的参考.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回