Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

White organic light emitting devices based on ultrathin emitting layer and bipolar hybrid interlayer

Yu Hao-Jian Yao Fang-Nan Dai Xu-Dong Cao Jin Chulgyu Jhun

Citation:

White organic light emitting devices based on ultrathin emitting layer and bipolar hybrid interlayer

Yu Hao-Jian, Yao Fang-Nan, Dai Xu-Dong, Cao Jin, Chulgyu Jhun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, efficient phosphorescent white organic light-emitting diodes (WOLEDs) with stable spectra are fabricated based on doping-free ultrathin emissive layers and mixed bipolar interlayers. To achieve WOLEDs, at least three kinds of light-emitting layers, i.e. blue, green and red, are needed. The traditional method to fabricate emissive layers is by co-evaporation, which can improve electroluminescent efficiency. However, the co-evaporation rate and dopant concentration are difficult to control, which leads to a bad reproducibility and thus goes against commercialization. In order to simplify the structures of WOLEDs and improve repeatability, several doping-free ultrathin emissive layers are used in this paper with 3 nm mixed bipolar interlayers separating them. The optimal ratio of bipolar hybrid material is determined by hole-only device, electron-only device and blue phosphorescent OLED. In addition, green, orange and red monochromatic OLED have also been fabricated separately, which are used to prove that mixed bipolar material is also suitable for the three phosphorescent emitting material. The WOLED with TCTA interlayers is fabricated to confirm that mixed bipolar material is beneficial to the characteristics of WOLEDs. The energy transfer process between different emitting materials is verified by studying the transient photoluminescence lifetime. The maximum efficiency of three-color and four-color doping-free WOLED are 52 cd/A (53.5 lm/W) and 13.8 cd/A (13.6 lm/W), respectively, and the maximum external quantum efficiency of three-color and four-color doping-free WOLED are 17.1% and 11.2%, respectively. Due to the sequential energy transfer structure between different emitting layers, the Commission Internationale de L'Eclairage coordinates shows a very slight variation of (0.005, 0.001) from 465 cd/m2 to 15950 cd/m2 for three-color WOLED. The Commission Internationale de L'Eclairage coordinates shows a variation of (0.023, 0.012) from 5077 cd/m2 to 14390 cd/m2 for four-color WOLED. The four-color WOLED shows a maximum color rendering index of 92.7 at 884 cd/m2, and it reaches 88.5 at 14390 cd/m2. In addition, the lifetime of phosphorescent OLED is usually poor due to the trap formed by triplet-polaron annihilation. The exciton distribution can be broadened and the exciton concentration can be reduced by using ultrathin light emitting layers (< 1 nm) and mixed bipolar interlayers. Therefore, triplet-polaron annihilation will be reduced, and the lifetime of OLEDs will be improved.
    [1]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K 2009 Nature 459 234

    [2]

    D'Andrade B W, Forrest S R 2004 Adv. Mater. 16 1585

    [3]

    Yang X L, Zhou G J, Wong W Y 2015 Chem. Soc. Rev. 44 8484

    [4]

    Fan C, Yang C L 2014 Chem. Soc. Rev. 43 6439

    [5]

    Sasabe H, Kido J 2013 J. Mater. Chem. 1 1699

    [6]

    So F, Kondakov D 2010 Adv. Mater. 22 3762

    [7]

    Wang Q, Ma D G 2010 Chem. Soc. Rev. 39 2387

    [8]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84

    [9]

    D'Andrade B W, Holmes R J, Forrest S R 2004 Adv. Mater. 16 624

    [10]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503

    [11]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Wang F S 2009 Adv. Mater. 21 2397

    [12]

    D'Andrade B W, Thompson M E, Forrest S R 2002 Adv. Mater. 14 147

    [13]

    Shih P I, Shu C F, Tung Y L, Chi Y 2006 Appl. Phys. Lett. 88 251110

    [14]

    Liu B Q, Wang L, Gao D Y, Xu M, Zhu X H, Zou J H, Lan L F, Ning H L, Peng J B, Cao Y 2015 Mater. Horiz. 2 536

    [15]

    Liu B Q, Li X L, Tao H, Zou J H, Xu M, Wang L, Peng J B, Cao Y 2017 J. Mater. Chem. C 5 7668

    [16]

    Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R 2006 Nature 440 908

    [17]

    Tokito S, Iijima T, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 2459

    [18]

    Liu B Q, Wang L, Gao D Y, Zou J H, Ning H L, Peng J B, Cao Y 2016 Light: Science & Applications 5 e16137

    [19]

    Liu B Q, Nie H, Zhou X B, Hu S B, Luo D X, Gao D Y, Zou J H, Xu M, Wang L, Zhao Z J, Qin A J, Peng J B, Ning H L, Cao Y, Tang B Z 2016 Adv. Funct. Mater. 26 776

    [20]

    Liu B Q, Wang L, Xu M, Tao H, Zou J H, Gao D Y, Lan L F, Ning H L, Peng J B, Cao Y 2014 Sci. Rep. 4 7198

    [21]

    Ding L, Sun Y Q, Chen H, Zu F S, Wang Z K, Liao L S 2014 J. Mater. Chem. C 2 10403

    [22]

    Liu B Q, Wang L, Tao H, Xu M, Zou J H, Ning H L, Peng J B, Cao Y 2017 Sci. Bull. 62 1193

    [23]

    Lee C W, Lee J Y 2013 Adv. Mater. 25 596

    [24]

    Holmes R J, Forrest S R, Tung Y J, Kwong R C, Brown J J, Garon S, Thompson M E 2003 Appl. Phys. Lett. 82 2422

    [25]

    Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H 2005 Adv. Mater. 17 285

    [26]

    Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 569

    [27]

    Brunner K, Dijken A, Borner H, Bastiaanesen J J A M, Kiggen N M M, Langeveld B M W 2004 J. Am. Chem. Soc. 126 6035

    [28]

    Thoms T, Okada S, Chen J P, Furugori M 2003 Thin Solid Films 436 264

    [29]

    Tsuji T, Naka S, Okada H, Onnagawa H 2002 Appl. Phys. Lett. 81 3329

    [30]

    Lee M T, Chu M T, Lin J S, Tseng M R 2010 J. Phys. D: Appl. Phys. 43 442003

    [31]

    Yin Y M, Yu J, Cao H T, Zhang L T, Sun H Z, Xie W F 2014 Sci. Rep. 4 6754

    [32]

    Zhao Y B, Chen J S, Ma D G 2013 ACS Appl. Mater. Interfaces 5 965

    [33]

    Luo D X, Xiao Y, Hao M M, Zhao Y, Yang Y B, Gao Y, Liu B Q 2017 Appl. Phys. Lett. 110 061105

    [34]

    Luo D X, Li X L, Zhao Y, Gao Y, Liu B Q 2017 ACS Photon. 4 1566

    [35]

    Xue K W, Sheng R, Duan Y, Chen P, Chen B Y, Wang X, Duan Y H, Zhao Y 2015 Org. Electron. 26 451

    [36]

    Liu B Q, Nie H, Lin G W, Hu S B, Gao D Y, Zou J H, Xu M, Wang L, Zhao Z J, Ning H L, Peng J B, Cao Y, Tang B Z 2017 ACS Appl. Mater. Interfaces 9 34162

    [37]

    Liu B Q, Tao H, Wang L, Gao D Y, Liu W C, Zou J H, Xu M, Ning H L, Peng J B, Cao Y 2016 Nano Energy 26 26

    [38]

    Su S J, Gonmori E, Sasabe H, Kido J 2008 Adv. Mater. 20 4189

    [39]

    Ding J Q, Wang Q, Zhao L, Ma D G, Wang L X, Jing X B, Wang F S 2010 J. Mater. Chem. 20 8126

    [40]

    Su S J, Sasabe H, Takeda T, Kido J 2008 Chem. Mater. 20 1691

    [41]

    Cai X Y, Padmaperuma A B, Sapochak L S, Vecchi P A, Burrows P E 2008 Appl. Phys. Lett. 92 083308

    [42]

    Sun N, Wang Q, Zhao Y B, Chen Y H, Yang D Z, Zhao F C, Chen J S, Ma D G 2014 Adv. Mater. 26 1617

    [43]

    Sun N, Wang Q, Zhao Y B, Yang D Z, Zhao F C, Chen J S, Ma D G 2014 J. Mater. Chem. C 2 7494

    [44]

    Marina E K, Thomas D P, Ralph H Y, David J G, Denis Y K, Christopher T B, Joseph C D, Jerome R L, Kevin P K 2008 J. Appl. Phys. 104 094501

    [45]

    Lee J, Lee J I, Lee J Y, Chu H Y 2009 Appl. Phys. Lett. 95 253304

    [46]

    Chen Y H, Chen J S, Zhao Y B, Ma D G 2012 Appl. Phys. Lett. 100 213301

    [47]

    Chen P, Chen B Y, Zuo L M, Duan Y, Han G G, Sheng R, Xue K W, Zhao Y 2016 Org. Electron. 31 136

    [48]

    Xie G H, Meng Y L, Wu F M, Tao C, Zhang D D, Liu M J, Xue Q, Chen W, Zhao Y 2008 Appl. Phys. Lett. 92 093305

    [49]

    Jeon S O, Yook K S, Joo C W, Lee J Y 2010 Org. Electron. 11 881

    [50]

    Kang J W, Lee S H, Park H D, Jeong W I, Yoo K M, Park Y S, Kim J J 2007 Appl. Phys. Lett. 90 223508

    [51]

    Yu H J, Dai X D, Yao F N, Wei X, Cao J, Jhun C 2018 Sci. Rep. 8 6068

    [52]

    Schwartz G, Pfeiffer M, Reineke S, Walzer K, Leo K 2007 Adv. Mater. 19 3672

    [53]

    Zhao Y B, Zhu L P, Chen J S, Ma D G 2012 Org. Electron. 13 1340

    [54]

    Zhu L P, Zhao Y B, Zhang H M, Chen J S, Ma D G 2014 J. Appl. Phys. 115 244512

    [55]

    Zhang Y F, Lee J, Forrest S R 2014 Nat. Commun. 5 5008

  • [1]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K 2009 Nature 459 234

    [2]

    D'Andrade B W, Forrest S R 2004 Adv. Mater. 16 1585

    [3]

    Yang X L, Zhou G J, Wong W Y 2015 Chem. Soc. Rev. 44 8484

    [4]

    Fan C, Yang C L 2014 Chem. Soc. Rev. 43 6439

    [5]

    Sasabe H, Kido J 2013 J. Mater. Chem. 1 1699

    [6]

    So F, Kondakov D 2010 Adv. Mater. 22 3762

    [7]

    Wang Q, Ma D G 2010 Chem. Soc. Rev. 39 2387

    [8]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84

    [9]

    D'Andrade B W, Holmes R J, Forrest S R 2004 Adv. Mater. 16 624

    [10]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503

    [11]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Wang F S 2009 Adv. Mater. 21 2397

    [12]

    D'Andrade B W, Thompson M E, Forrest S R 2002 Adv. Mater. 14 147

    [13]

    Shih P I, Shu C F, Tung Y L, Chi Y 2006 Appl. Phys. Lett. 88 251110

    [14]

    Liu B Q, Wang L, Gao D Y, Xu M, Zhu X H, Zou J H, Lan L F, Ning H L, Peng J B, Cao Y 2015 Mater. Horiz. 2 536

    [15]

    Liu B Q, Li X L, Tao H, Zou J H, Xu M, Wang L, Peng J B, Cao Y 2017 J. Mater. Chem. C 5 7668

    [16]

    Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R 2006 Nature 440 908

    [17]

    Tokito S, Iijima T, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 2459

    [18]

    Liu B Q, Wang L, Gao D Y, Zou J H, Ning H L, Peng J B, Cao Y 2016 Light: Science & Applications 5 e16137

    [19]

    Liu B Q, Nie H, Zhou X B, Hu S B, Luo D X, Gao D Y, Zou J H, Xu M, Wang L, Zhao Z J, Qin A J, Peng J B, Ning H L, Cao Y, Tang B Z 2016 Adv. Funct. Mater. 26 776

    [20]

    Liu B Q, Wang L, Xu M, Tao H, Zou J H, Gao D Y, Lan L F, Ning H L, Peng J B, Cao Y 2014 Sci. Rep. 4 7198

    [21]

    Ding L, Sun Y Q, Chen H, Zu F S, Wang Z K, Liao L S 2014 J. Mater. Chem. C 2 10403

    [22]

    Liu B Q, Wang L, Tao H, Xu M, Zou J H, Ning H L, Peng J B, Cao Y 2017 Sci. Bull. 62 1193

    [23]

    Lee C W, Lee J Y 2013 Adv. Mater. 25 596

    [24]

    Holmes R J, Forrest S R, Tung Y J, Kwong R C, Brown J J, Garon S, Thompson M E 2003 Appl. Phys. Lett. 82 2422

    [25]

    Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H 2005 Adv. Mater. 17 285

    [26]

    Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F 2003 Appl. Phys. Lett. 83 569

    [27]

    Brunner K, Dijken A, Borner H, Bastiaanesen J J A M, Kiggen N M M, Langeveld B M W 2004 J. Am. Chem. Soc. 126 6035

    [28]

    Thoms T, Okada S, Chen J P, Furugori M 2003 Thin Solid Films 436 264

    [29]

    Tsuji T, Naka S, Okada H, Onnagawa H 2002 Appl. Phys. Lett. 81 3329

    [30]

    Lee M T, Chu M T, Lin J S, Tseng M R 2010 J. Phys. D: Appl. Phys. 43 442003

    [31]

    Yin Y M, Yu J, Cao H T, Zhang L T, Sun H Z, Xie W F 2014 Sci. Rep. 4 6754

    [32]

    Zhao Y B, Chen J S, Ma D G 2013 ACS Appl. Mater. Interfaces 5 965

    [33]

    Luo D X, Xiao Y, Hao M M, Zhao Y, Yang Y B, Gao Y, Liu B Q 2017 Appl. Phys. Lett. 110 061105

    [34]

    Luo D X, Li X L, Zhao Y, Gao Y, Liu B Q 2017 ACS Photon. 4 1566

    [35]

    Xue K W, Sheng R, Duan Y, Chen P, Chen B Y, Wang X, Duan Y H, Zhao Y 2015 Org. Electron. 26 451

    [36]

    Liu B Q, Nie H, Lin G W, Hu S B, Gao D Y, Zou J H, Xu M, Wang L, Zhao Z J, Ning H L, Peng J B, Cao Y, Tang B Z 2017 ACS Appl. Mater. Interfaces 9 34162

    [37]

    Liu B Q, Tao H, Wang L, Gao D Y, Liu W C, Zou J H, Xu M, Ning H L, Peng J B, Cao Y 2016 Nano Energy 26 26

    [38]

    Su S J, Gonmori E, Sasabe H, Kido J 2008 Adv. Mater. 20 4189

    [39]

    Ding J Q, Wang Q, Zhao L, Ma D G, Wang L X, Jing X B, Wang F S 2010 J. Mater. Chem. 20 8126

    [40]

    Su S J, Sasabe H, Takeda T, Kido J 2008 Chem. Mater. 20 1691

    [41]

    Cai X Y, Padmaperuma A B, Sapochak L S, Vecchi P A, Burrows P E 2008 Appl. Phys. Lett. 92 083308

    [42]

    Sun N, Wang Q, Zhao Y B, Chen Y H, Yang D Z, Zhao F C, Chen J S, Ma D G 2014 Adv. Mater. 26 1617

    [43]

    Sun N, Wang Q, Zhao Y B, Yang D Z, Zhao F C, Chen J S, Ma D G 2014 J. Mater. Chem. C 2 7494

    [44]

    Marina E K, Thomas D P, Ralph H Y, David J G, Denis Y K, Christopher T B, Joseph C D, Jerome R L, Kevin P K 2008 J. Appl. Phys. 104 094501

    [45]

    Lee J, Lee J I, Lee J Y, Chu H Y 2009 Appl. Phys. Lett. 95 253304

    [46]

    Chen Y H, Chen J S, Zhao Y B, Ma D G 2012 Appl. Phys. Lett. 100 213301

    [47]

    Chen P, Chen B Y, Zuo L M, Duan Y, Han G G, Sheng R, Xue K W, Zhao Y 2016 Org. Electron. 31 136

    [48]

    Xie G H, Meng Y L, Wu F M, Tao C, Zhang D D, Liu M J, Xue Q, Chen W, Zhao Y 2008 Appl. Phys. Lett. 92 093305

    [49]

    Jeon S O, Yook K S, Joo C W, Lee J Y 2010 Org. Electron. 11 881

    [50]

    Kang J W, Lee S H, Park H D, Jeong W I, Yoo K M, Park Y S, Kim J J 2007 Appl. Phys. Lett. 90 223508

    [51]

    Yu H J, Dai X D, Yao F N, Wei X, Cao J, Jhun C 2018 Sci. Rep. 8 6068

    [52]

    Schwartz G, Pfeiffer M, Reineke S, Walzer K, Leo K 2007 Adv. Mater. 19 3672

    [53]

    Zhao Y B, Zhu L P, Chen J S, Ma D G 2012 Org. Electron. 13 1340

    [54]

    Zhu L P, Zhao Y B, Zhang H M, Chen J S, Ma D G 2014 J. Appl. Phys. 115 244512

    [55]

    Zhang Y F, Lee J, Forrest S R 2014 Nat. Commun. 5 5008

  • [1] Wang Yin-Xia, Bai Xiao-Chuan, Zhang Yong, Li Guo-Qing. Influence of high-frequency localized surface plasmon polariton effect of Al nanoparticles on luminescence efficiency of deep-blue BCzVBi OLED. Acta Physica Sinica, 2024, 73(3): 037802. doi: 10.7498/aps.73.20230858
    [2] Guan Sheng-Jie, Zhou Lin-Jian, Shen Cheng-Mei, Zhang Yong. Exciton-polaron interaction in blue fluorescent organic light-emitting diodes. Acta Physica Sinica, 2020, 69(16): 167101. doi: 10.7498/aps.69.20191930
    [3] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [4] Tao Hong, Gao Dong-Yu, Liu Bai-Quan, Wang Lei, Zou Jian-Hua, Xu Miao, Peng Jun-Biao. Enhancement of tandem organic light-emitting diode performance by inserting an ultra-thin Ag layer in charge generation layer. Acta Physica Sinica, 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [5] Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming. Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations. Acta Physica Sinica, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [6] Fan Chang-Jun, Wang Rui-Xue, Liu Zhen, Lei Yong, Li Guo-Qing, Xiong Zu-Hong, Yang Xiao-Hui. Phosphorescent hybrid organic-inorganic light emitting devices with solution-processed small molecule emissive layers. Acta Physica Sinica, 2015, 64(16): 167801. doi: 10.7498/aps.64.167801
    [7] Zhang Ya-Nan, Wang Jun-Feng. Improvement of the color-stability in top-emitting white organic light-emitting diodes by utilizing step-doping in emission layers. Acta Physica Sinica, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [8] Liu Bai-Quan, Lan Lin-Feng, Zou Jian-Hua, Peng Jun-Biao. A novel organic light-emitting diode by utilizing double hole injection layer. Acta Physica Sinica, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [9] Wu You-Zhi, Zhang Wen-Lin, Ni Wei-De, Zhang Cai-Rong, Zhang Ding-Jun. Influence of active layer thickness on the performance of distyrylarylene derivative blue organic light-emitting device. Acta Physica Sinica, 2012, 61(9): 098101. doi: 10.7498/aps.61.098101
    [10] Zhang Yong, Liu Ya-Li, Jiao Wei, Chen Lin, Xiong Zu-Hong. Magnetoconductance effect in organic light-emitting devices. Acta Physica Sinica, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [11] Chen Shu-Fen, Shao Ming, Guo Xu, Qian Yan, Shi Nai-En, Xie Ling-Hai, Yang Yang, Huang Wei. Top-emitting white organic light-emitting diodes based on a ZnS light outcoupling layer. Acta Physica Sinica, 2012, 61(8): 087801. doi: 10.7498/aps.61.087801
    [12] Zhang Yun-Yan, Fan Guan-Han. Theoretical study of GaN interval layers and quantum well barrier layers of different doping types in dual-wavelength LED. Acta Physica Sinica, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [13] Wang Jin, Zhao Yi, Xie Wen-Fa, Duan Yu, Chen Ping, Liu Shi-Yong. High-efficiency blue fluorescence organic light-emitting diodes with DPVBi inserted in the doping emmision layer. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [14] Zhang Yun-Yan, Fan Guang-Han, Zhang Yong, Zheng Shu-Wen. Effect of spectrum-control in dual-wavelength light-emitting diode by doped GaN interval layer. Acta Physica Sinica, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [15] Wang Xu-Peng, Mi Bao-Xiu, Gao Zhi-Qiang, Guo Qing, Huang Wei. Progress of white organic light-emitting device. Acta Physica Sinica, 2011, 60(8): 087808. doi: 10.7498/aps.60.087808
    [16] Niu Lian-Bin, Guan Yun-Xia. Fullerene-doped hole transport NPB layer in organic light-emitting devices. Acta Physica Sinica, 2009, 58(7): 4931-4935. doi: 10.7498/aps.58.4931
    [17] Wu Xiao-Ming, Hua Yu-Lin, Yin Shou-Gen, Zhang Guo-Hui, Hui Juan-Li, Zhang Li-Juan, Wang Yu. Properties of white organic electroluminescent device with double light-emitting layers based upon different hosts. Acta Physica Sinica, 2008, 57(2): 1150-1154. doi: 10.7498/aps.57.1150
    [18] Zhang Guo-Hui, Hua Yu-Lin, Wu Xiao-Ming, Yin Shou-Gen, Niu Xia, Hui Juan-Li, Wang Yu, Zhang Li-Juan. Fabrication of a new organic multilayer phosphorescent white-light-emitting device and evaluation of its characteristics. Acta Physica Sinica, 2007, 56(9): 5408-5412. doi: 10.7498/aps.56.5408
    [19] Cao Jin, Liu Xiang, Zhang Xiao-Bo, Wei Fu-Xiang, Zhu Wen-Qing, Jiang Xue-Yin, Zhang Zhi-Lin, Xu Shao-Hong. Top-emitting organic light-emitting devices with cavity effect. Acta Physica Sinica, 2007, 56(2): 1088-1092. doi: 10.7498/aps.56.1088
    [20] Zhang Guo-Hui, Hua Yu-Lin, Wu Kong-Wu, Wu Xiao-Ming, Yin Shou-Gen, Hui Juan-Li, An Hai-Ping, Zhu Fei-Jian, Niu Xia. Using BCP layer to control the chroma of white phosphorescent organic light-emitting device. Acta Physica Sinica, 2007, 56(6): 3559-3563. doi: 10.7498/aps.56.3559
Metrics
  • Abstract views:  6173
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  05 October 2018
  • Accepted Date:  12 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回