Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of A-exciton and spin relaxation in WS2 and WSe2 monolayer

Yu Yang Zhang Wen-Jie Zhao Wan-Ying Lin Xian Jin Zuan-Ming Liu Wei-Min Ma Guo-Hong

Citation:

Dynamics of A-exciton and spin relaxation in WS2 and WSe2 monolayer

Yu Yang, Zhang Wen-Jie, Zhao Wan-Ying, Lin Xian, Jin Zuan-Ming, Liu Wei-Min, Ma Guo-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Two-dimensional transitional metal dichalcogenide (2D TMD) emerges as a good candidate material in optoelectronics and valleytronics due to its particular exciton effect and strong spin-valley locking. Owing to the enhancement of quantum confinement effect and the decline of dielectric shielding effect, the optical excitation of electron-hole pair is enhanced substantially, which makes large TMD exciton binding energy and makes excitons observed easily at room temperature or even higher temperature. Optical response of 2D TMD is dominated by excitons at room temperature, which provides an ideal medium for studying the generation, relaxation and interaction of excitons or trions. By employing ultrafast time resolved spectroscopy, we investigate experimentally the dynamic behaviors of A-exciton and spin relaxations for two types of TMDs, i.e. WS2 and WSe2 monolayers, respectively. By tuning the excitation wavelength of the degenerate pump and probe laser beam, the WS2 monolayer and WSe2 monolayer are excited at their A-exciton resonance transition position or near their A-exciton resonance transition position in order to compare the dynamical evolutions of band structure and exciton polarization of the two similar WS2 and WSe2 monolayer structures. Our experimental results reveal that the relaxation of A exciton in WS2 shows biexponential decay, while that of WSe2 shows triexponential decay, and the A-exciton life time in WSe2 is much longer than that of WS2 counterpart. The spin relaxation of A exciton in WS2 shows a monoexponential feature with a lifetime of 0.35 ps, which is dominated by the electron-hole exchange interaction. For the case of WSe2, the spin relaxation can be well fitted with biexponential function, the fast component has a lifetime of 0.5 ps and the slow one has a lifetime of 28 ps. The fast relaxation is dominated by the electron-hole exchange interaction, and the slow one comes from the formation of dark exciton via spin-lattice coupling. By tuning the excitation wavelength around A-exciton transition, the formation of dark exciton in WSe2 is demonstrated to be much more effective than that in WS2 monolayer. Our experimental results provide qualitative physical images for an in-depth understanding of the relationship between exciton and TMD structure, and also provide reference for further designing and regulating the TMDs based optoelectronic devices.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448

    [3]

    Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225

    [4]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490

    [5]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147

    [6]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [7]

    Kang K, Xie S, Huang L J, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656

    [8]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T, Ye J T 2015 Science 350 1353

    [9]

    Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K, Hone J C, Zhang X 2014 Science 344 488

    [10]

    Mak K F, He K L, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494

    [11]

    Yan R H, Ourmazed A, Lee K F 1992 IEEE Trans. Electron Dev. 39 1704

    [12]

    Schwierz F 2010 Nat. Nanotechnol. 5 487

    [13]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Di X, Yao W, Xu X D 2013 Nat. Com. 4 1474

    [14]

    Stébé B, Ainane A 1989 Superlattices Microstruct. 5 545

    [15]

    Ramasubramaniam A 2012 Phys. Rev. B 86 115409

    [16]

    Mak K F, Lee C, Hone J, Shan J, Heinz Tony F 2010 Phys. Rev. Lett. 105 136805

    [17]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [18]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J X, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898

    [19]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406

    [20]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [21]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Com. 3 887

    [22]

    Yan T F, Qiao X F, Tan P H, Zhang X H 2015 Sci. Rep. 5 15625

    [23]

    Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302

    [24]

    Yang L Y, Sinstsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830

    [25]

    Wang Q S, Ge S F, Xiao L, Qiu J, Ji Y X, Feng J, Sun D 2013 ACS Nano 12 11087

    [26]

    Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D, Jonker B T 2012 Appl. Phys. Lett. 101 221907

    [27]

    Yan P G, Chen H, Yin J D, Xu Z H, Li J R, Jiang Z K, Zhang W F, Wang J Z, Li I L, Sun Z P, Ruan S 2017 Nanoscale 9 1871

    [28]

    Li Y L, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422

    [29]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 1 791

    [30]

    Sahin H, Tongay S, Horzum S, Fan W, Zhou J, Li J, Wu J, Peeters F M 2013 Phys. Rev. B 87 165409

    [31]

    Shi H Y, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L B 2013 ACS Nano 7 1072

    [32]

    Korn T, Heydrich S, Hirmer M, Schmutzler J, Schüller C 2011 Appl. Phys. Lett. 99 102109

    [33]

    Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Lupton J, Bratschitsch R, Schüller C, Korn T 2017 Solar RRL 11 1700131

    [34]

    Maialle M Z, de Andrada e Silva E A, Sham L J 1993 Phys. Rev. B 47 15776

    [35]

    Vinattieri A, Jagdeep S, Damen T C, Kim D S, Pfeier L N, Maialle M Z, Sham L J 1994 Phys. Rev. B 50 10868

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448

    [3]

    Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225

    [4]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490

    [5]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147

    [6]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [7]

    Kang K, Xie S, Huang L J, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656

    [8]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T, Ye J T 2015 Science 350 1353

    [9]

    Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K, Hone J C, Zhang X 2014 Science 344 488

    [10]

    Mak K F, He K L, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494

    [11]

    Yan R H, Ourmazed A, Lee K F 1992 IEEE Trans. Electron Dev. 39 1704

    [12]

    Schwierz F 2010 Nat. Nanotechnol. 5 487

    [13]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Di X, Yao W, Xu X D 2013 Nat. Com. 4 1474

    [14]

    Stébé B, Ainane A 1989 Superlattices Microstruct. 5 545

    [15]

    Ramasubramaniam A 2012 Phys. Rev. B 86 115409

    [16]

    Mak K F, Lee C, Hone J, Shan J, Heinz Tony F 2010 Phys. Rev. Lett. 105 136805

    [17]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [18]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J X, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898

    [19]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406

    [20]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [21]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Com. 3 887

    [22]

    Yan T F, Qiao X F, Tan P H, Zhang X H 2015 Sci. Rep. 5 15625

    [23]

    Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302

    [24]

    Yang L Y, Sinstsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830

    [25]

    Wang Q S, Ge S F, Xiao L, Qiu J, Ji Y X, Feng J, Sun D 2013 ACS Nano 12 11087

    [26]

    Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D, Jonker B T 2012 Appl. Phys. Lett. 101 221907

    [27]

    Yan P G, Chen H, Yin J D, Xu Z H, Li J R, Jiang Z K, Zhang W F, Wang J Z, Li I L, Sun Z P, Ruan S 2017 Nanoscale 9 1871

    [28]

    Li Y L, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422

    [29]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 1 791

    [30]

    Sahin H, Tongay S, Horzum S, Fan W, Zhou J, Li J, Wu J, Peeters F M 2013 Phys. Rev. B 87 165409

    [31]

    Shi H Y, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L B 2013 ACS Nano 7 1072

    [32]

    Korn T, Heydrich S, Hirmer M, Schmutzler J, Schüller C 2011 Appl. Phys. Lett. 99 102109

    [33]

    Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Lupton J, Bratschitsch R, Schüller C, Korn T 2017 Solar RRL 11 1700131

    [34]

    Maialle M Z, de Andrada e Silva E A, Sham L J 1993 Phys. Rev. B 47 15776

    [35]

    Vinattieri A, Jagdeep S, Damen T C, Kim D S, Pfeier L N, Maialle M Z, Sham L J 1994 Phys. Rev. B 50 10868

  • [1] Tang Yan-Hao. Exotic states in moiré superlattices of twisted semiconducting transition metal dichalcogenides. Acta Physica Sinica, 2023, 72(2): 027802. doi: 10.7498/aps.72.20222080
    [2] Sun Tao, Yuan Jian-Mei. Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [3] Shi Bei-Bei, Tao Guang-Yi, Dai Yu-Chen, He Xiao, Lin Feng, Zhang Han, Fang Zhe-Yu. Exciton moiré potential in twisted WSe2 homobilayers modulated by electric field. Acta Physica Sinica, 2022, 71(17): 177301. doi: 10.7498/aps.71.20220664
    [4] Tao Guang-Yi, Qi Peng-Fei, Dai Yu-Chen, Shi Bei-Bei, Huang Yi-Jing, Zhang Tian-Hao, Fang Zhe-Yu. Enhancement of photoluminescence of monolayer transition metal dichalcogenide by subwavelength TiO2 grating. Acta Physica Sinica, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [5] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [6] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [7] Zou Shuang-Yang,  Muhammad Arshad,  Yang Gao-Ling,  Liu Rui-Bin,  Shi Li-Jie,  Zhang Yong-You,  Jia Bao-Hua,  Zhong Hai-Zheng,  Zou Bing-Suo. Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures. Acta Physica Sinica, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [8] Wu Yuan-Jun, Shen Chao, Tan Qing-Hai, Zhang Jun, Tan Ping-Heng, Zheng Hou-Zhi. Temperature dependent excitonic transition energies and linewidths of monolayer MoS2 probed by magnetic circular dichroism spectroscopy. Acta Physica Sinica, 2018, 67(14): 147801. doi: 10.7498/aps.67.20180615
    [9] Hou Hai-Yan, Yao Hui, Li Zhi-Jian, Nie Yi-Hang. Valley and spin polarization manipulated by electric field in magnetic silicene superlattice. Acta Physica Sinica, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [10] Wang Wen-Jing, Meng Rui-Xuan, Li Yuan, Gao Kun. Dynamical study on the stimulated absorption and emission in a coujugated polymer. Acta Physica Sinica, 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [11] Wang Wen-Juan, Wang Hai-Long, Gong Qian, Song Zhi-Tang, Wang Hui, Feng Song-Lin. External electric field effect on exciton binding energy in InGaAsP/InP quantum wells. Acta Physica Sinica, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [12] Di Bing, Wang Ya-Dong, Zhang Ya-Lin. The effect of interchain coupling on inelastic scattering of oppositely charged polarons. Acta Physica Sinica, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [13] Li Wen-Sheng, Sun Bao-Quan. Optical transition of the charged excitons in InAs single quantum dots. Acta Physica Sinica, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [14] Deng Yan-Ping, Lü Bin-Bin, Tian Qiang. Excitons and effects of phonons on excitons in asymmetric square quantum well. Acta Physica Sinica, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [15] Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [16] Jin Hua, Liu Shu, Zhang Zhen-Zhong, Zhang Li-Gong, Zheng Zhu-Hong, Shen De-Zhen. Exciton tunnelling in (CdZnTe,ZnSeTe)/ZnTe complex quantum wells. Acta Physica Sinica, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [17] Zheng Rui-Lun. Energy of excitons and probability distribution of electrons in columned composite system composed of quantum dots and quantum wires. Acta Physica Sinica, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [18] Jin Hua, Zhang Li-Gong, Zheng Zhu-Hong, Kong Xiang-Gui, An Li-Nan, Shen De-Zhen. Exciton tunnelling in ZnCdSe quantum well/CdSe quantum dots. Acta Physica Sinica, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [19] Xu Quan, Tian Qiang. The interaction of excitons with phonons and solution of breathers in one-dimensional molecular chain. Acta Physica Sinica, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [20] CHEN KE, ZHAO ER-HAI, SUN XIN, FU ROU-LI. THE POLARIZABILITY OF EXCITON AND BIEXCITON IN POLYMER(ANALYTICAL CALCULATION). Acta Physica Sinica, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
Metrics
  • Abstract views:  8682
  • PDF Downloads:  385
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2018
  • Accepted Date:  20 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回