Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature dependent excitonic transition energies and linewidths of monolayer MoS2 probed by magnetic circular dichroism spectroscopy

Wu Yuan-Jun Shen Chao Tan Qing-Hai Zhang Jun Tan Ping-Heng Zheng Hou-Zhi

Citation:

Temperature dependent excitonic transition energies and linewidths of monolayer MoS2 probed by magnetic circular dichroism spectroscopy

Wu Yuan-Jun, Shen Chao, Tan Qing-Hai, Zhang Jun, Tan Ping-Heng, Zheng Hou-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Layered transition metal dichalcogenides (TMDs), as a new class of two-dimensional material, have received wide attention of scientific community due to their peculiar electronic and optical properties. Monolayer TMDs such as MoS2, MoSe2, WS2 and WSe2 are semiconductors with band gap energies in the visible and near-infrared region, which promises the applications in logic nano-devices, ultra-high speed photoelectric detectors and nano-lasers. Temperature has strong influences on the electronic and optical properties of semiconductors, and their applications in photonic and optoelectronic devices. Thus, the research on the temperature dependence of the energy band of monolayer TMDs is important and meaningful. Monolayer MoS2, as a prototype of TMDs, displays a weak absorption line with a strong background in original reflection or absorption spectra. The strong background has a tremendous influence on the determination of excitonic transition energy and linewidth. In this work, we adopt the reflection magnetic circular dichroism (MCD) spectroscopy in which reflection spectra and MCD spectra can be simultaneously obtained. We demonstrate that the background disturbance is eliminated in the MCD spectra, in contrast to the reflectivity spectra. And we discuss the optimization of our home-built experimental setup in detail. Through the elaborate analysis of the MCD theory, we demonstrate that the excitonic transition energy and linewidth can be directly and accurately extracted from the MCD spectrum. We perform the reflection MCD measurements on monolayer MoS2 in a temperature range of 65–300 K. The transition energies and linewidths of A and B excitons of monolayer MoS2 are extracted, respectively. Those functional parameters that describe the temperature dependence of the energy and linewidth of both excitonic transitions are evaluated and analyzed. We find that the broadening of the linewidth is related to the LO phonon scattering, and the linewidth of A exciton is clearly narrower than that of B exciton. The linewidth difference between A and B excitons might result from the stronger inter-valley coupling of B exciton. Our results indicate that MCD spectroscopy, as a modulated spectroscopy by magnetic fields, provides an easy tool to determine the features of monolayer excitons.
      Corresponding author: Shen Chao, shenchao@semi.ac.cn;hzzheng@semi.ac.cn ; Zheng Hou-Zhi, shenchao@semi.ac.cn;hzzheng@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404324, 11574305, 51527901).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [3]

    Eda G, Maier S A 2013 ACS Nano 7 5660

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947

    [6]

    Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676

    [7]

    Liu Y, Cheng R, Liao L, Zhou H L, Bai J W, Liu G, Liu L X, Huang Y, Duan X F 2011 Nat. Commun. 2 579

    [8]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H L 2012 Nat. Nanotechnol. 7 363

    [9]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [10]

    Massicotte M, Schmidt P, Vialla F, Schadler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H 2016 Nat. Nanotechnol. 11 42

    [11]

    Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vuckovic J, Majumdar A, Xu X 2015 Nature 520 69

    [12]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [13]

    Lv R, Robinson J A, Schaak R E, Sun D, Sun Y F, Mallouk T E, Terrones M 2015 Acc. Chem. Res. 48 56

    [14]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L B, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F N, Wang Y L, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509

    [15]

    Kumar A, Ahluwalia P K 2012 Eur. Phys. J. B 85 186

    [16]

    Liu G B, Shan W Y, Yao Y, Yao W, Xiao D 2013 Phys. Rev. B 88 085433

    [17]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y L, Aslan O B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802

    [18]

    Xiao J, Zhao M, Wang Y, Zhang X 2017 Nanophotonics 6 1309

    [19]

    Aivazian G, Gong Z R, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C W, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148

    [20]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643

    [21]

    Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D, Jonker B T 2012 Appl. Phys. Lett. 101 221907

    [22]

    Barrows C J, Vlaskin V A, Gamelin D R 2015 J. Phys. Chem. Lett. 6 3076

    [23]

    Muckel F, Yang J, Lorenz S, Baek W, Chang H, Hyeon T, Bacher G, Fainblat R 2016 ACS Nano 10 7135

    [24]

    Wu Y J, Shen C, Tan Q H, Shi J, Liu X F, Wu Z H, Zhang J, Tan P H, Zheng H Z 2018 Appl. Phys. Lett. 112 153105

    [25]

    Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422

    [26]

    Mitioglu A A, Galkowski K, Surrente A, Klopotowski L, Dumcenco D, Kis A, Maude D K, Plochocka P 2016 Phys. Rev. B 93 165412

    [27]

    Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A V, Klaas M, Dietrich C P, Kavokin A V, Hofling S, Schneider C 2016 Nat. Commun. 7 13328

    [28]

    Steele D, Whitehead J C, Meares P, Doggett G, Grice R, Hollas J M 1984 J. Chem. Soc. Faraday Trans. 2 80 1503

    [29]

    Liu X L, Wu J B, Luo X D, Tan P H 2017 Acta Phys. Sin. 66 147801 (in Chinese) [(刘雪璐, 吴江滨, 罗向东, 谭平恒 2017 物理学报 66 147801]

    [30]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757

    [31]

    Korn T, Heydrich S, Hirmer M, Schmutzler J, Schuller C 2011 Appl. Phys. Lett. 99 102109

    [32]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966

    [33]

    Varshni Y P 1967 Physica 34 149

    [34]

    Lautenschlager P, Garriga M, Logothetidis S, Cardona M 1987 Phys. Rev. B 35 9174

    [35]

    Yen P C, Hsu H P, Liu Y T, Huang Y S, Tiong K K 2004 J. Phys. Condens. Matter 16 6995

    [36]

    Tiong K K, Shou T S, Ho C H 2000 J. Phys. Condens. Matter 12 3441

    [37]

    Vina L, Logothetidis S, Cardona M 1984 Phys. Rev. B 30 1979

    [38]

    Bernal-Villamil I, Berghauser G, Selig M, Niehues I, Schmidt R, Schneider R, Tonndorf P, Erhart P, de Vasconcellos S M, Bratschitsch R, Knorr A, Malic E 2018 2D Materials 5 025011

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [3]

    Eda G, Maier S A 2013 ACS Nano 7 5660

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947

    [6]

    Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676

    [7]

    Liu Y, Cheng R, Liao L, Zhou H L, Bai J W, Liu G, Liu L X, Huang Y, Duan X F 2011 Nat. Commun. 2 579

    [8]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H L 2012 Nat. Nanotechnol. 7 363

    [9]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [10]

    Massicotte M, Schmidt P, Vialla F, Schadler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H 2016 Nat. Nanotechnol. 11 42

    [11]

    Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vuckovic J, Majumdar A, Xu X 2015 Nature 520 69

    [12]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [13]

    Lv R, Robinson J A, Schaak R E, Sun D, Sun Y F, Mallouk T E, Terrones M 2015 Acc. Chem. Res. 48 56

    [14]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L B, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F N, Wang Y L, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509

    [15]

    Kumar A, Ahluwalia P K 2012 Eur. Phys. J. B 85 186

    [16]

    Liu G B, Shan W Y, Yao Y, Yao W, Xiao D 2013 Phys. Rev. B 88 085433

    [17]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y L, Aslan O B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802

    [18]

    Xiao J, Zhao M, Wang Y, Zhang X 2017 Nanophotonics 6 1309

    [19]

    Aivazian G, Gong Z R, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C W, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148

    [20]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643

    [21]

    Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D, Jonker B T 2012 Appl. Phys. Lett. 101 221907

    [22]

    Barrows C J, Vlaskin V A, Gamelin D R 2015 J. Phys. Chem. Lett. 6 3076

    [23]

    Muckel F, Yang J, Lorenz S, Baek W, Chang H, Hyeon T, Bacher G, Fainblat R 2016 ACS Nano 10 7135

    [24]

    Wu Y J, Shen C, Tan Q H, Shi J, Liu X F, Wu Z H, Zhang J, Tan P H, Zheng H Z 2018 Appl. Phys. Lett. 112 153105

    [25]

    Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422

    [26]

    Mitioglu A A, Galkowski K, Surrente A, Klopotowski L, Dumcenco D, Kis A, Maude D K, Plochocka P 2016 Phys. Rev. B 93 165412

    [27]

    Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A V, Klaas M, Dietrich C P, Kavokin A V, Hofling S, Schneider C 2016 Nat. Commun. 7 13328

    [28]

    Steele D, Whitehead J C, Meares P, Doggett G, Grice R, Hollas J M 1984 J. Chem. Soc. Faraday Trans. 2 80 1503

    [29]

    Liu X L, Wu J B, Luo X D, Tan P H 2017 Acta Phys. Sin. 66 147801 (in Chinese) [(刘雪璐, 吴江滨, 罗向东, 谭平恒 2017 物理学报 66 147801]

    [30]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757

    [31]

    Korn T, Heydrich S, Hirmer M, Schmutzler J, Schuller C 2011 Appl. Phys. Lett. 99 102109

    [32]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966

    [33]

    Varshni Y P 1967 Physica 34 149

    [34]

    Lautenschlager P, Garriga M, Logothetidis S, Cardona M 1987 Phys. Rev. B 35 9174

    [35]

    Yen P C, Hsu H P, Liu Y T, Huang Y S, Tiong K K 2004 J. Phys. Condens. Matter 16 6995

    [36]

    Tiong K K, Shou T S, Ho C H 2000 J. Phys. Condens. Matter 12 3441

    [37]

    Vina L, Logothetidis S, Cardona M 1984 Phys. Rev. B 30 1979

    [38]

    Bernal-Villamil I, Berghauser G, Selig M, Niehues I, Schmidt R, Schneider R, Tonndorf P, Erhart P, de Vasconcellos S M, Bratschitsch R, Knorr A, Malic E 2018 2D Materials 5 025011

  • [1] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] Wang Wan-Yu, Shi Kai-Xi, Li Jin-Hua, Chu Xue-Ying, Fang Xuan, Kuang Shang-Qi, Xu Guo-Hua. Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance. Acta Physica Sinica, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [3] Sun Tao, Yuan Jian-Mei. Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [4] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [5] Li Lu, Zhang Yang-Kun, Shi Dong-Xia, Zhang Guang-Yu. Cotrollable growth of monolayer MoS2 films and their applications in devices. Acta Physica Sinica, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [6] Shi Bei-Bei, Tao Guang-Yi, Dai Yu-Chen, He Xiao, Lin Feng, Zhang Han, Fang Zhe-Yu. Exciton moiré potential in twisted WSe2 homobilayers modulated by electric field. Acta Physica Sinica, 2022, 71(17): 177301. doi: 10.7498/aps.71.20220664
    [7] Tao Guang-Yi, Qi Peng-Fei, Dai Yu-Chen, Shi Bei-Bei, Huang Yi-Jing, Zhang Tian-Hao, Fang Zhe-Yu. Enhancement of photoluminescence of monolayer transition metal dichalcogenide by subwavelength TiO2 grating. Acta Physica Sinica, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [8] Huang Kun, Wang Teng-Fei, Yao Ji. Nonlinear plate theory of single-layered MoS2 with thermal effect. Acta Physica Sinica, 2021, 70(13): 136201. doi: 10.7498/aps.70.20210160
    [9] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [10] Li Jin-Hua, Zhang Si-Nan, Zhai Ying-Jiao, Ma Jian-Gang, Fang Wen-Hui, Zhang Yu. Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates. Acta Physica Sinica, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [11] Wang Dan, Zou Juan, Tang Li-Ming. Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study. Acta Physica Sinica, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [12] Yu Yang,  Zhang Wen-Jie,  Zhao Wan-Ying,  Lin Xian,  Jin Zuan-Ming,  Liu Wei-Min,  Ma Guo-Hong. Dynamics of A-exciton and spin relaxation in WS2 and WSe2 monolayer. Acta Physica Sinica, 2019, 68(1): 017201. doi: 10.7498/aps.68.20181769
    [13] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [14] Li Wei-Sheng, Zhou Jian, Wang Han-Chen, Wang Shu-Xian, Yu Zhi-Hao, Li Song-Lin, Shi Yi, Wang Xin-Ran. Logical integration device for two-dimensional semiconductor transition metal sulfide. Acta Physica Sinica, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [15] Fan Wei, Zeng Zhi. Quaternary sulphides Cu2Zn(Ti, Zr, Hf)S4, the new type of photovoltaic materials. Acta Physica Sinica, 2016, 65(6): 068801. doi: 10.7498/aps.65.068801
    [16] Zhou Pan-Fan, Yuan Huan, Xu Xiao-Nan, Lu Yi-Hong, Xu Ming. Effects of doping F and transition metal on crystal structure and properties of ZnO thin film. Acta Physica Sinica, 2015, 64(24): 247503. doi: 10.7498/aps.64.247503
    [17] Wang Yuan-Qian, He Jun, Xiao Si, Yang Neng-An, Chen Huo-Zhang. Wavelength selective optical limiting effect on MoS2 solution. Acta Physica Sinica, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [18] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [19] Zhou Xun, Liang Bing-Qing, Wang Hai, Zhang Zhen-Rong, Chen Liang-Yao, Wang Yin-Jun. A study on magnetic and magneto-optical properties of PdMn/Co multilayers. Acta Physica Sinica, 2003, 52(10): 2616-2621. doi: 10.7498/aps.52.2616
    [20] Zhou Xun, Liang Bing-Qing, Wang Hai, Chen Liang-Yao, Tang Yun-Jun, Wang Yin-Jun. Studies on magnetic and magneto-optical properties of Pt976Mn26/Co multilayers. Acta Physica Sinica, 2003, 52(2): 492-497. doi: 10.7498/aps.52.492
Metrics
  • Abstract views:  7762
  • PDF Downloads:  249
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2018
  • Accepted Date:  24 April 2018
  • Published Online:  20 July 2019

/

返回文章
返回