-
The coaxial gun discharge, used as plasma jet with high density and velocity, has a wide variety of applications such as plasma space propulsion, simulation experiment of thermal transient events in the International Thermonuclear Experimental Reactor, plasma refueling for fusion reactors and a laboratory scale platform for studying astrophysical phenomena. The plasma produced in the coaxial gun can be accelerated by self-induced Lorentz force, and the ionization in the transport process can be based on " snow-plow model” in which a coaxial current sheet moves forward and sweeps a large amount of the gas between two electrodes to cause the plasma dump. Based on the measurements of discharge current, voltage, photocurrent and magnetic signal, the experimental investigation on the characteristics of plasma motion and current sheet channel distribution in the gun operated under different discharge conditions and various pressures is carried out. In this paper, it is emphasized to explore the electrical and dynamic properties about plasma in the first half-cycle of current. The results show that the plasma velocity increases with the increase of the current amplitude, and that the transport distance is proportional to the axial kinetic energy of ions when the pressure is fixed at 10 Pa and discharge current is adjusted from 35.7 kA to 69.8 kA. Moreover, in the case of high current, the plasma jet from the nozzle tends to form a new current path at the bottom of the gun. However, when the discharge current is fixed at 49.8 kA and the gas pressures range from 5 Pa to 40 Pa, the plasma motion velocity and transport distance are continuously reduced. Meanwhile, it is not found that new current paths are generated at the bottom of the coaxial gun under high pressure. The generation of the new current path is relevant to the channel impedance formed by more charged particles left at the bottom of the gun and neutral particles leaking from current sheet during discharge. Besides, a multiple discharge phenomenon is presented in experiment and the secondary discharge breakdown position occurs at the head of the electrode when the current is reversed to a positive value. Therefore, this study provides a reasonable choice of electrical parameters to obtain optimal plasma characteristics during the discharge of the coaxial gun.
-
Keywords:
- coaxial gun /
- plasma /
- photocurrent /
- magnetic field
[1] Case A, Messer S, Brockington S, Wu L, Witherspoon F D, Elton R 2013 Phys. Plasmas 20 012704Google Scholar
[2] Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar
[3] Messer S, Case A, Bomgardner R, Phillips M, Witherspoon F D 2009 Phys. Plasmas 16 064502Google Scholar
[4] Asai T, Itagaki H, Numasawa H, Terashima Y, Hirano Y, Hirose A 2010 Rev. Sci. Instrum. 81 10E119Google Scholar
[5] Paganucci F, Zuin M, Agostini M, Andrenucci M, Antoni V, Bagatin M, Bonomo F, Cavazzana R, Franz P, Marrelli L, Martin P, Martines E, Rossetti P, Serianni G, Scarin P, Signori M, Spizzo G 2008 Plasma Phys. Contr. F. 50 124010Google Scholar
[6] Poehlmann F, Gascon N, Thomas C, Cappelli N 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, USA, July 9−12, 2006 p5157
[7] Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar
[8] Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar
[9] Kikuchi Y, Sakuma I, Iwamoto D, Kitagawa Y, Fukumoto N, Nagata M, Uedaet Y 2013 J. Nucl. Mater. 438 S715Google Scholar
[10] Nagata M, Kikuchi Y, Fukumoto N 2009 IEE J. Trans. Electric. Electron. Eng. 4 518Google Scholar
[11] Klimov N, Podkovyrov V, Zhitlukhin A, Kovalenko D, Linke J, Pintsuk G, Landman I, Pestchanyi S, Bazylev B, Janeschitz G, Loarte A, Merola M, Hirai T, Federici G, Riccardi B, Mazul I, Giniyatulin R, Khimchenko L, Koidan V 2011 J. Nucl. Mater. 415 S59Google Scholar
[12] Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar
[13] Voronin A V, Gusev V K, Petrov Y V, Sakharov N V, Abramova K B, Sklyarova E M, Tolstyakov S Y 2005 Nucl. Fusion 45 1039Google Scholar
[14] Voronin A V, Gusev V K, Petrov Y V, Mukhin E E, Tolstyakov S Y, Kurskiev G S, Kochergin M M, HellblomK G 2008 Nukleonika 53 103
[15] Underwood T C, Loebner T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar
[16] Butler T D, Henins I, Jahoda F C, Marshall J, Morse R L 1969 Phys. Fluids 12 1904Google Scholar
[17] Hart P J 1964 J. Appl. Phys. 35 3425Google Scholar
[18] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar
Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar
[19] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar
Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar
[20] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar
Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar
[21] Pert G J 1968 J. Appl. Phys. 39 4215Google Scholar
[22] Bruzzone H, Martínez J F 2001 Plasma Sources Sci. Technol. 10 471Google Scholar
[23] Al-Hawat S 2004 IEEE T. Plasma Sci. 32 764Google Scholar
[24] Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21Google Scholar
[25] Mathuthu M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar
[26] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar
Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar
[27] Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar
-
-
[1] Case A, Messer S, Brockington S, Wu L, Witherspoon F D, Elton R 2013 Phys. Plasmas 20 012704Google Scholar
[2] Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar
[3] Messer S, Case A, Bomgardner R, Phillips M, Witherspoon F D 2009 Phys. Plasmas 16 064502Google Scholar
[4] Asai T, Itagaki H, Numasawa H, Terashima Y, Hirano Y, Hirose A 2010 Rev. Sci. Instrum. 81 10E119Google Scholar
[5] Paganucci F, Zuin M, Agostini M, Andrenucci M, Antoni V, Bagatin M, Bonomo F, Cavazzana R, Franz P, Marrelli L, Martin P, Martines E, Rossetti P, Serianni G, Scarin P, Signori M, Spizzo G 2008 Plasma Phys. Contr. F. 50 124010Google Scholar
[6] Poehlmann F, Gascon N, Thomas C, Cappelli N 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, USA, July 9−12, 2006 p5157
[7] Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar
[8] Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar
[9] Kikuchi Y, Sakuma I, Iwamoto D, Kitagawa Y, Fukumoto N, Nagata M, Uedaet Y 2013 J. Nucl. Mater. 438 S715Google Scholar
[10] Nagata M, Kikuchi Y, Fukumoto N 2009 IEE J. Trans. Electric. Electron. Eng. 4 518Google Scholar
[11] Klimov N, Podkovyrov V, Zhitlukhin A, Kovalenko D, Linke J, Pintsuk G, Landman I, Pestchanyi S, Bazylev B, Janeschitz G, Loarte A, Merola M, Hirai T, Federici G, Riccardi B, Mazul I, Giniyatulin R, Khimchenko L, Koidan V 2011 J. Nucl. Mater. 415 S59Google Scholar
[12] Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar
[13] Voronin A V, Gusev V K, Petrov Y V, Sakharov N V, Abramova K B, Sklyarova E M, Tolstyakov S Y 2005 Nucl. Fusion 45 1039Google Scholar
[14] Voronin A V, Gusev V K, Petrov Y V, Mukhin E E, Tolstyakov S Y, Kurskiev G S, Kochergin M M, HellblomK G 2008 Nukleonika 53 103
[15] Underwood T C, Loebner T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar
[16] Butler T D, Henins I, Jahoda F C, Marshall J, Morse R L 1969 Phys. Fluids 12 1904Google Scholar
[17] Hart P J 1964 J. Appl. Phys. 35 3425Google Scholar
[18] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar
Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar
[19] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar
Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar
[20] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar
Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar
[21] Pert G J 1968 J. Appl. Phys. 39 4215Google Scholar
[22] Bruzzone H, Martínez J F 2001 Plasma Sources Sci. Technol. 10 471Google Scholar
[23] Al-Hawat S 2004 IEEE T. Plasma Sci. 32 764Google Scholar
[24] Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21Google Scholar
[25] Mathuthu M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar
[26] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar
Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar
[27] Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar
Catalog
Metrics
- Abstract views: 8378
- PDF Downloads: 87
- Cited By: 0