Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mobility edges of bosonic pairs in one-dimensional quasi-periodical lattices

Xu Zhi-Hao Huangfu Hong-Li Zhang Yun-Bo

Citation:

Mobility edges of bosonic pairs in one-dimensional quasi-periodical lattices

Xu Zhi-Hao, Huangfu Hong-Li, Zhang Yun-Bo
PDF
HTML
Get Citation
  • Mobility edge as one of the most important concepts in a disordered system in which there exists an energy dependent conductor-to-insulator transition has aroused great interest. Unlike an arbitrarily small disorder inducing the Anderson localization in one-dimensional random potential, the well-known Aubry-André model presents a metal-to-insulator transition without mobility edges. Some generalized Aubry-André models are proposed whose the mobility edges in compactly analytic forms are found. However, the existence of the many-body mobility edges in thermodynamic limit for an interacting disordered system is still an open question due to the dimension of the Hilbert space beyond the numerical capacity. In this paper, we demonstrate the existence of the mobility edges of bosonic pairs trapped in one dimensional quasi-periodical lattices subjected to strongly interactions. We believe that our theory will provide a new insight into the studying of the many-body mobility edges.Two strongly interacting bosons are trapped in an incommensurate model, which is described as $\hat H = - J\sum\limits_j{} {\left( {\hat c_j^\dagger {{\hat c}_{j + 1}} + {\rm{h}}{\rm{.c}}{\rm{.}}} \right)} + 2\lambda \sum\limits_j{} {\dfrac{{\cos \left( {2{\text{π}}\alpha j} \right)}}{{1 - b\cos \left( {2{\text{π}}\alpha j} \right)}}} {\hat n_j} + \dfrac{U}{2}\sum\limits_j{} {{{\hat n}_j}\left( {{{\hat n}_j} - 1} \right)} ,$ where there exists no interaction, the system displays mobility edges at $b\varepsilon = 2(J - \lambda )$, which separates the extended regime from the localized one and b = 0 is the standard Aubry-André model. By applying the perturbation method to the third order in a strong interaction case, we can induce an effective Hamiltonian for bosonic pairs. In the small b case, the bosonic pairs present the mobility edges in a simple closed expression form $b\left( {\dfrac{{{E^2}}}{U} - E - \dfrac{4}{E}} \right) = - 4\left(\dfrac{1}{E} + \lambda \right)$, which is the central result of the paper. In order to identify our results numerically, we define a normalized participation ratio (NPR) $\eta (E)$ to discriminate between the extended properties of the many-body eigenvectors and the localized ones. In the thermodynamic limit, the NPR tends to 0 for a localized state, while it is finite for an extended state. The numerical calculations finely coincide with the analytic results for b = 0 and small b cases. Especially, for the b = 0 case, the mobility edges of the bosonic pairs are described as $\lambda = - 1/E$. The extended regime and the one with the mobility edges will vanish with the interaction U increasing to infinity. We also study the scaling of the NPR with system size in both extended and localized regimes. For the extended state the NPR $\eta (E) \propto 1/L$ tends to a finite value with the increase of L and $L \to \infty $, while for the localized case, $\eta (E) \propto {(1/L)^2}$ tends to zero when $L \to \infty $. The $b \to 1$ limit is also considered. As the modulated potential approaches to a singularity when $b \to 1$, the analytic expression does not fit very well. However, the numerical results indicate that the mobility edges of bosonic pairs still exist. We will try to consider the detection of the mobility edges of the bosonic pairs in the future.
      Corresponding author: Xu Zhi-Hao, xuzhihao@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604188, 11234008, 11474189, 11674201), the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D201027), and the Fund for Shanxi "1331 Project" Key Subjects, China.
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Sarma S D, Song H, Xie X C 1988 Phys. Rev. L 61 2144Google Scholar

    [3]

    Hiramoto H, Kohmoto M 1989 Phys. Rev. B 40 8225Google Scholar

    [4]

    Sarma S D, Song He, Xie X C 1990 Phys. Rev. B 41 5544Google Scholar

    [5]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [6]

    Biddle J, Wang B, Priour D J, Sarma S D 2009 Phys. Rev. A 80 021603(R)Google Scholar

    [7]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [8]

    Hofstadter D R 1983 Phys. Rev. Lett. 51 1198Google Scholar

    [9]

    Lanini Y, Bromberg Y, Christodoulides D N, Silberberg Y 2010 Phys. Rev. Lett. 105 163905Google Scholar

    [10]

    Lanini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906Google Scholar

    [11]

    Schwartz T 2007 Nature 44 652

    [12]

    Evers F, Mirlin A D 2007 Rev. Mod. Phys. 80 1355

    [13]

    Lüschen H K, Scherg S, Kohlert T, Schreiber M 2018 Phys. Rev. Lett. 120 160404Google Scholar

    [14]

    McGehee W R, Kondov S S, Xu W, Zirbel J J, DeMarco B 2013 Phys. Rev. Lett. 111 145303Google Scholar

    [15]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Sliberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [16]

    Aubry S, André G 1980 Ann. Isr.: Phys. Soc. 3 18

    [17]

    Aulbach C 2004 New J. Phys. 3 70

    [18]

    Eilmes A, Grimm U, Römer R A, Schreiber M 1999 Eur. Phys. J. B 8 547

    [19]

    Wiater D, Sowiński T, Zakrzewski J 2017 Phys. Rev. A 96 043629Google Scholar

    [20]

    Barelli A, Bellissard J, Jacquod P, Shepelyansky D L 1996 Phys. Rev. Lett. 77 4752Google Scholar

    [21]

    Shepelyansky D L 1996 Phys. Rev. B 54 14896Google Scholar

    [22]

    Dufour D, Orso G 2012 Phys. Rev. Lett. 109 155306Google Scholar

    [23]

    Basko D M, Aleiner I L, Altshuler B L 2006 Ann. Phys. 321 1126Google Scholar

    [24]

    Lev Y B, Reichman D R 2014 Phys. Rev. B 89 220201(R)Google Scholar

    [25]

    Nag S, Garg A 2017 Phys. Rev. B 96 060203(R)Google Scholar

    [26]

    Wang Y C, Hu H P, Chen S 2016 Eur. Phys. J. B 89 77Google Scholar

    [27]

    Ponte P, Papić Z, Huveneers F 2015 Phys. Rev. B 751 55111

    [28]

    Velhinho M T, Pimentel I R, 2000 Phys. Rev. B 61 1043Google Scholar

    [29]

    Macé N, Laflorencie N, Alet F 2018 arXiv: 1811.01912

    [30]

    Li X P, Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 115 186601Google Scholar

    [31]

    Modak R, Mukerjee S 2015 Phys. Rev. Lett. 115 230401Google Scholar

    [32]

    Hsu Y T, Li X, Deng D L, Sarma S D 2018 Phys. Rev. Lett. 121 245701Google Scholar

  • 图 1  $b = 0$时, ${\rm{NPR}}$在不同的相互作用强度$U$下随无序强度$\lambda $和能量本征值E的变化 (a) $U = - 15$; (b) $U = - 20$; (c) $U = - 40$; (d) $U = - 100$; 蓝色的实线对应迁移率边的表达式; 这里取$L = 150$

    Figure 1.  NPR varying with the disorder strengths $\lambda $ and the energy eigenvalues E for $b = 0$, $L = 150$ and different U: (a) U = –15; (b) U = –20; (c) U = –40; (d) U = –100. The blue solid line represents the analytical expression of the mobility edges.

    图 2  (a) $b = 0,\;U = - 100,\;E = - 100.044$时, $\lambda $分别为$0.008$$0.012$所对应本征态的密度分布; (b) $b = 0,\;U = - 100$时, 不同$\lambda $$E$所对应的本征态的${\rm{NPR}}$$1/L$的变化

    Figure 2.  (a) Density distributions for $b = 0,\;U = - 100,\;E = - 100.044$, $\lambda = 0.008$ and $0.012$, respectively ; (b) NPR varying with $1/L$ for $b = 0,U = - 100$ and different $\lambda $ and $E$.

    图 3  (a) NPR在$L = 150$时随无序强度$\lambda $和能量本征值E的变化, 蓝色的实线对应迁移率边的表达式; (b) $\lambda =$0.048, $L = 150$时, 能量$E = - 20$${\rm{ - }}20.37$所对应的密度分布; (c) 不同能量的NPR在$\lambda =0.048$时随$1/L$的变化. 这里我们选取$b = 0.2$, $U = - 20$

    Figure 3.  (a) NPR varying with the disorder strength $\lambda $ and the eigenvalues $E$ with $L = 150$, the blue solid line represents the analytical expression of the mobility edges; (b) density distributions for $\lambda = 0.048,L = 150$ and different $E = - 20$ and $ - 20.37$; (c) scaling of the NPR with system size for $\lambda = 0.048$ and different energies. Here, we choose $b = 0.2$ and $U = - 20$.

    图 4  (a), (b) 分别为$\lambda = 0.08$, $b = 0.5,0.96$时, $\left| {2\lambda \left( j \right)} \right|$$\left| {4\lambda {{\left( j \right)}^2}{\rm{/}}U} \right|$在格点上的分布情况; (c), (d) ${\rm{NPR}}$$L = 150$时随无序强度$\lambda $和能量本征值$E$的变化, 其参数与(a), (b)相同; 蓝色的实线对应迁移率边的表达式

    Figure 4.  (a), (b) $\left| {2\lambda (j)} \right|$ and $\left| {4\lambda {{(j)}^2}/U} \right|$ changing with different sites $j$ for $\lambda = 0.08,b = 0.5$ and $0.96$, respectively; (c), (d) NPR varying with $\lambda $ and $E$ for $L = 150$ and with the same parameters as (a) and (b), respectively. The blue solid line represents the analytical expression of the mobility edges.

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Sarma S D, Song H, Xie X C 1988 Phys. Rev. L 61 2144Google Scholar

    [3]

    Hiramoto H, Kohmoto M 1989 Phys. Rev. B 40 8225Google Scholar

    [4]

    Sarma S D, Song He, Xie X C 1990 Phys. Rev. B 41 5544Google Scholar

    [5]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [6]

    Biddle J, Wang B, Priour D J, Sarma S D 2009 Phys. Rev. A 80 021603(R)Google Scholar

    [7]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [8]

    Hofstadter D R 1983 Phys. Rev. Lett. 51 1198Google Scholar

    [9]

    Lanini Y, Bromberg Y, Christodoulides D N, Silberberg Y 2010 Phys. Rev. Lett. 105 163905Google Scholar

    [10]

    Lanini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906Google Scholar

    [11]

    Schwartz T 2007 Nature 44 652

    [12]

    Evers F, Mirlin A D 2007 Rev. Mod. Phys. 80 1355

    [13]

    Lüschen H K, Scherg S, Kohlert T, Schreiber M 2018 Phys. Rev. Lett. 120 160404Google Scholar

    [14]

    McGehee W R, Kondov S S, Xu W, Zirbel J J, DeMarco B 2013 Phys. Rev. Lett. 111 145303Google Scholar

    [15]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Sliberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [16]

    Aubry S, André G 1980 Ann. Isr.: Phys. Soc. 3 18

    [17]

    Aulbach C 2004 New J. Phys. 3 70

    [18]

    Eilmes A, Grimm U, Römer R A, Schreiber M 1999 Eur. Phys. J. B 8 547

    [19]

    Wiater D, Sowiński T, Zakrzewski J 2017 Phys. Rev. A 96 043629Google Scholar

    [20]

    Barelli A, Bellissard J, Jacquod P, Shepelyansky D L 1996 Phys. Rev. Lett. 77 4752Google Scholar

    [21]

    Shepelyansky D L 1996 Phys. Rev. B 54 14896Google Scholar

    [22]

    Dufour D, Orso G 2012 Phys. Rev. Lett. 109 155306Google Scholar

    [23]

    Basko D M, Aleiner I L, Altshuler B L 2006 Ann. Phys. 321 1126Google Scholar

    [24]

    Lev Y B, Reichman D R 2014 Phys. Rev. B 89 220201(R)Google Scholar

    [25]

    Nag S, Garg A 2017 Phys. Rev. B 96 060203(R)Google Scholar

    [26]

    Wang Y C, Hu H P, Chen S 2016 Eur. Phys. J. B 89 77Google Scholar

    [27]

    Ponte P, Papić Z, Huveneers F 2015 Phys. Rev. B 751 55111

    [28]

    Velhinho M T, Pimentel I R, 2000 Phys. Rev. B 61 1043Google Scholar

    [29]

    Macé N, Laflorencie N, Alet F 2018 arXiv: 1811.01912

    [30]

    Li X P, Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 115 186601Google Scholar

    [31]

    Modak R, Mukerjee S 2015 Phys. Rev. Lett. 115 230401Google Scholar

    [32]

    Hsu Y T, Li X, Deng D L, Sarma S D 2018 Phys. Rev. Lett. 121 245701Google Scholar

  • [1] Wang Yu, Liang Yu-Lin, Xing Yan-Xi. Topological Anderson insulator phase in graphene. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241031
    [2] Gu Yan, Lu Zhan-Peng. Localization transition in non-Hermitian coupled chain. Acta Physica Sinica, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [3] Liu Hui, Lu Zhan-Peng, Xu Zhi-Hao. Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices. Acta Physica Sinica, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [4] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [5] Lu Zhan-Peng, Xu Zhi-Hao. Reentrant localization phenomenon in one-dimensional cross-stitch lattice with flat band. Acta Physica Sinica, 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [6] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [7] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [8] Wu Jin, Lu Zhan-Peng, Xu Zhi-Hao, Guo Li-Ping. Mobility edges and reentrant localization induced by superradiance. Acta Physica Sinica, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [9] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [10] Jiang Tian-Shu, Xiao Meng, Zhang Zhao-Qing, Chan Che-Ting. Physics and topological properties of periodic and aperiodic transmission line networks. Acta Physica Sinica, 2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
    [11] Wang Yu-Cheng, Liu Xiong-Jun, Chen Shu. Properties and applications of one dimensional quasiperiodic lattices. Acta Physica Sinica, 2019, 68(4): 040301. doi: 10.7498/aps.68.20181927
    [12] Liu Tong, Gao Xian-Long. Identifying the mobility edges in a one-dimensional incommensurate model with p-wave superfluid. Acta Physica Sinica, 2016, 65(11): 117101. doi: 10.7498/aps.65.117101
    [13] Wang Xiao, Chen Li-Chao, Liu Yan-Hong, Shi Yun-Long, Sun Yong. Effect of longitudinal mode on the transmission properties near the Dirac-like point of the photonic crystals. Acta Physica Sinica, 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [14] He Long, Song Yun. Numerical study of the superconductor-insulator transition in double-layer graphene driven by disorder. Acta Physica Sinica, 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [15] Hou Bi-Hui, Liu Feng-Yan, Yue Ming, Wang Ke-Jun. Localization of conduction electrons in nanometer metal Dy. Acta Physica Sinica, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [16] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [17] Zhao Yi. Localization in the one-dimensional systems with long-range correlated disorder. Acta Physica Sinica, 2010, 59(1): 532-535. doi: 10.7498/aps.59.532
    [18] Xu Xing-Sheng, Chen Hong-Da, Zhang Dao-Zhong. Photon localization in amorphous photonic crystal. Acta Physica Sinica, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [19] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [20] PANG GEN-DI, CAI JIAN-HUA. PHONON LOCALIZATION IN INHOMOGENEOUS DISORDERED SYSTEMS. Acta Physica Sinica, 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
Metrics
  • Abstract views:  7481
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2018
  • Accepted Date:  20 February 2019
  • Available Online:  01 April 2019
  • Published Online:  20 April 2019

/

返回文章
返回