Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

All-optical broadcast ultra-wideband signal source based on semiconductor fiber ring laser

Zhao Zan-Shan Li Pei-Li

Citation:

All-optical broadcast ultra-wideband signal source based on semiconductor fiber ring laser

Zhao Zan-Shan, Li Pei-Li
PDF
HTML
Get Citation
  • A novel scheme for all-optical ultra-wideband signal source based on semiconductor fiber ring laser (SFRL) is proposed, in which three monocycle signals can be generated simultaneously. The effect of the bias current of the semiconductor optical amplifier (SOA) in the SFRL, the wavelength of the lasing light, the power and the wavelength of input signal light on the performance of the monocycle signals are analyzed through numerical simulation. The results show that the output monocycle pulses with better symmetry can be obtained when the bias current of SOA is in a range of 200−220 mA. The average power, the amplitude of the positive and negative pulses of the output monocycle pulses increase as the wavelength of the lasing light increases. A better performance of the monocycle pulses can be obtained under lower input signal optical power. The wavelength of the input signal light has a little effect on the output monocycle pulses.
      Corresponding author: Zhao Zan-Shan, zhaozanshan@163.com
    [1]

    Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36Google Scholar

    [2]

    Wang Q, Zeng F, Blais S, Yao J P 2006 Opt. Lett. 31 3083Google Scholar

    [3]

    Wang Q, Yao J P 2007 Opt. Express 15 14667Google Scholar

    [4]

    Huang H, Xu K, Li J Q, Wu J, Hong X B, Lin J T 2008 J. Lightwave Technol. 26 2635Google Scholar

    [5]

    Dridi K, Hamam H 2008 IEEE International Conference on Signal Processing & Communications Dubai, United Arab Emirates, November 24−27, 2008 p1167

    [6]

    Chen H W, Chen M H, Wang T L, Li M, Xie S Z 2008 J. Lightwave Technol. 26 2492Google Scholar

    [7]

    Dong J J, Zhang X L, Zhang Y, Huang D X 2008 Electron. Lett. 44 1083Google Scholar

    [8]

    Zhang W W, Sun J Q, Wang J, Cheng C, Zhang X L 2009 IEEE Photonic Tech. L. 21 271Google Scholar

    [9]

    Hu Z F, Sun J Q, Shao J, Zhang X L 2010 IEEE Photonic. Tech. L. 22 42

    [10]

    Wang J, Sun Q Z, Sun J Q, Zhang W W 2009 Opt. Express 17 3521Google Scholar

    [11]

    Wu T H, Wu J, Chiu Y J 2010 Opt. Express 18 3379Google Scholar

    [12]

    Zhang W, Chen X Q, Chai J, Huang Y N 2016 15th International Conference on Optical Communications and Networks Hangzhou, China, September 24−27, 2016 p1

    [13]

    Mu H Q, Wang M G, Jian S S 2016 15th International Conference on Optical Communications and Networks Hangzhou, China, September 24−27, 2016 pp1

    [14]

    Dong J J, Fu S N, Shum P, Zhang X L 2007 6th International Conference on Information, Communications & Signal Processing Singapore, December 10-13, 2007 p1

    [15]

    Zeng F, Yao J 2006 IEEE Photonic Tech. L. 18 823Google Scholar

    [16]

    Zeng F, Wang Q, Yao J 2007 Electron. Lett. 43 119Google Scholar

    [17]

    Dong J J, Zhang X L, Xu J, Huang D X, Fu S N, Shum P 2008 Optical Fiber Communication/National Fiber Optic Engineers Conference San Diego, California, United States, February 24–28, 2008 p1

    [18]

    Velanas P, Bogris A, Argyris A, Dimitris Syvridis 2008 J. Lightwave Technol. 26 3269

    [19]

    Wang F, Dong J J, Xu E M, Zhang X L 2010 Opt. Express 18 24588Google Scholar

    [20]

    Dong J J, Zhang X L, Xu J, et al. 2007 Opt. Express 32 2158

    [21]

    TorresCompany, Víctor, Prince K, Monroy I T 2008 IEEE Photonic. Tech. L. 20 1299Google Scholar

    [22]

    Zhao Z S, Li P L, Zheng J J, et al. 2012 Optoelectr. Lett. 8 89Google Scholar

    [23]

    Zhang Y, Zhao M, Ma X L, et al. 2015 Optik 126 340

    [24]

    Zhang F Z, Wu J, Fu S N, et al. 2010 Opt. Express 18 15870Google Scholar

    [25]

    Sujit B, Hong Y H, Paul S, et al. 2004 J. Opt. Soc. Am. B 21 1023Google Scholar

    [26]

    Hong Y H, Spencer P S, Shore K A 2004 IEEE J. Quantum Electronics 40 152Google Scholar

    [27]

    Chow K K, Shu C, Mak M W K, et al. 2004 IEEE J. Sel. Top. Quant. 10 1197Google Scholar

  • 图 1  基于SFRL全光广播UWB信号源的结构示意图

    Figure 1.  The structure of all-optical UWB broadcast signal source based on SFRL.

    图 2  基于SFRL全光广播式monocycle信号源的输出 (a), (b), (c) 激射光波长分别为1538, 1540, 1542 nm对应的时域波形; (d), (e), (f)激射光波长分别为 1538, 1540, 1542 nm对应的功率谱

    Figure 2.  The output of all-optical broadcast monocycle signal source based on SFRL: The waveform of monocycle signals when the lasing light wavelength of 1538 nm (a), 1540 nm (b), 1542 nm (c); the power spectrum of monocycle signals when the lasing light wavelengthof 1538 nm (d), 1540 nm (e), 1542 nm (f).

    图 3  (a)注入电流为200 mA时波长-增益系数曲线; (b)在SOA输出端激射光1−3路的增益-时间曲线

    Figure 3.  (a) Wavelength-gain coefficient curve with 200 mA SOA bias current; (b) the gain-time curve of monocycle 1−3 at the SOA output.

    图 4  不同SOA注入电流输出的monocycle波形和功率谱 (a) I = 180 mA, (b) I = 210 mA, (c) I = 240 mA输出的monocycle波形; (d) I = 180 mA, (e) I = 210 mA, (f) I = 240 mA输出的monocycle功率谱

    Figure 4.  The waveform and the power spectrum of monocycle with different SOA bias current: The waveform when I = 180 mA (a), I = 210 mA (b), I = 240 mA (c); the power spectrum when I = 180 mA (d) I = 210 mA (e), I = 240 mA (f).

    图 5  输入信号功率对输出monocycles信号性能的影响 (a)不同输入信号功率情况下输出monocycle信号的中心频率和–10 dB频率带宽曲线; (b)输入功率为–10 dBm时输出的monocycle信号时域波形; (c)输入功率为–10 dBm时输出的monocycle信号功率谱; (d)输入光功率为–4 dBm时输出的monocycle信号时域波形; (e)输入光功率为–4 dBm时输出的monocycle信号功率谱

    Figure 5.  The effect of input signal power on the performance of the output monocycle signals: (a) The curve of center frequency and –10 dB frequency bandwidth width different input signal powers; (b) the monocycle signal waveform when input signal power is –10 dBm; (c) the power spectrum when input signal power is –10 dBm; (d) the monocycle signal waveform when input signal power is –4 dBm; (e) the power spectrum when input signal power is –4 dBm.

    图 6  (a)不同输入信号光波长情况下中心频率和–10 dB频率带宽曲线; (b)输入信号光波长1530 nm时输出的monocycle信号时域波形; (c)输入信号光波长1530 nm时输出的monocycle信号功率谱; (d)输入信号光波长为1550 nm时输出的monocycle信号时域波形; (e)输入信号光波长为1550 nm时输出的monocycle信号功率谱

    Figure 6.  (a) Curve of center frequency and –10 dB frequency bandwidth width different input signal wavelength; (b) monocycle signal waveform when input signal wavelength is 1530 nm; (c) power spectrum when input signal wavelength is 1530 nm; (d) monocycle signal waveform when input signal wavelength is 1550 nm; (e) power spectrum when input signal wavelength is 1550 nm.

    表 1  计算采用的参数值

    Table 1.  Parameters used in the mode.

    参量符号取值
    有源区长度L/10–4 m5.5
    有源区宽度w/10–6 m3.3
    有源区厚度d/10–7 m1.5
    非辐射符合系统${c_1}$/108 s–11.5
    双分子复合系数${c_2}$/10–16 m3·s–12.5
    Auger复合系数${c_3}$/10–40 m6·s–11.5
    光限制因子Γ0.3
    折射率na3.22
    饱和功率${P_{{\rm{sat}}}}$/10–2 W1.0
    有源区损耗${\alpha _{{\rm{in}}}}$/104 m–11.4
    涂覆层损耗${\alpha _{\rm{c}}}$/103 m–12.0
    散射损耗${\alpha _{\rm{c}}}$/103 m–11.0
    导带中电子有效质量mc/10–32 kg4.1
    价带中电子有效质量mhh/10–31 kg4.19
    价带中空穴有效质量mlh/10–33 kg5.06
    不包含两个耦合器耦合比的所有损耗${\varepsilon _1}$0.4
    耦合器1的耦合比${k_1}$0.5
    耦合器2的耦合比${k_2}$0.5
    ASE谱的起始波长${\lambda _1}$/10–6 m1.40
    ASE谱的结束波长${\lambda _{\rm{m}}}$/10–6 m1.60
    ASE谱的分段数m10
    SOA的分段数n10
    自发辐射因子β/10–52
    群速度${\nu _{\rm{g}}}$/107 m·s–17.5
    DownLoad: CSV
  • [1]

    Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36Google Scholar

    [2]

    Wang Q, Zeng F, Blais S, Yao J P 2006 Opt. Lett. 31 3083Google Scholar

    [3]

    Wang Q, Yao J P 2007 Opt. Express 15 14667Google Scholar

    [4]

    Huang H, Xu K, Li J Q, Wu J, Hong X B, Lin J T 2008 J. Lightwave Technol. 26 2635Google Scholar

    [5]

    Dridi K, Hamam H 2008 IEEE International Conference on Signal Processing & Communications Dubai, United Arab Emirates, November 24−27, 2008 p1167

    [6]

    Chen H W, Chen M H, Wang T L, Li M, Xie S Z 2008 J. Lightwave Technol. 26 2492Google Scholar

    [7]

    Dong J J, Zhang X L, Zhang Y, Huang D X 2008 Electron. Lett. 44 1083Google Scholar

    [8]

    Zhang W W, Sun J Q, Wang J, Cheng C, Zhang X L 2009 IEEE Photonic Tech. L. 21 271Google Scholar

    [9]

    Hu Z F, Sun J Q, Shao J, Zhang X L 2010 IEEE Photonic. Tech. L. 22 42

    [10]

    Wang J, Sun Q Z, Sun J Q, Zhang W W 2009 Opt. Express 17 3521Google Scholar

    [11]

    Wu T H, Wu J, Chiu Y J 2010 Opt. Express 18 3379Google Scholar

    [12]

    Zhang W, Chen X Q, Chai J, Huang Y N 2016 15th International Conference on Optical Communications and Networks Hangzhou, China, September 24−27, 2016 p1

    [13]

    Mu H Q, Wang M G, Jian S S 2016 15th International Conference on Optical Communications and Networks Hangzhou, China, September 24−27, 2016 pp1

    [14]

    Dong J J, Fu S N, Shum P, Zhang X L 2007 6th International Conference on Information, Communications & Signal Processing Singapore, December 10-13, 2007 p1

    [15]

    Zeng F, Yao J 2006 IEEE Photonic Tech. L. 18 823Google Scholar

    [16]

    Zeng F, Wang Q, Yao J 2007 Electron. Lett. 43 119Google Scholar

    [17]

    Dong J J, Zhang X L, Xu J, Huang D X, Fu S N, Shum P 2008 Optical Fiber Communication/National Fiber Optic Engineers Conference San Diego, California, United States, February 24–28, 2008 p1

    [18]

    Velanas P, Bogris A, Argyris A, Dimitris Syvridis 2008 J. Lightwave Technol. 26 3269

    [19]

    Wang F, Dong J J, Xu E M, Zhang X L 2010 Opt. Express 18 24588Google Scholar

    [20]

    Dong J J, Zhang X L, Xu J, et al. 2007 Opt. Express 32 2158

    [21]

    TorresCompany, Víctor, Prince K, Monroy I T 2008 IEEE Photonic. Tech. L. 20 1299Google Scholar

    [22]

    Zhao Z S, Li P L, Zheng J J, et al. 2012 Optoelectr. Lett. 8 89Google Scholar

    [23]

    Zhang Y, Zhao M, Ma X L, et al. 2015 Optik 126 340

    [24]

    Zhang F Z, Wu J, Fu S N, et al. 2010 Opt. Express 18 15870Google Scholar

    [25]

    Sujit B, Hong Y H, Paul S, et al. 2004 J. Opt. Soc. Am. B 21 1023Google Scholar

    [26]

    Hong Y H, Spencer P S, Shore K A 2004 IEEE J. Quantum Electronics 40 152Google Scholar

    [27]

    Chow K K, Shu C, Mak M W K, et al. 2004 IEEE J. Sel. Top. Quant. 10 1197Google Scholar

  • [1] Wang Dong-Jun, Sun Zi-Han, Zhang Yuan, Tang Li, Yan Li-Ping. Ultra-wideband thin frequency-selective surface absorber against sheet resistance fluctuation. Acta Physica Sinica, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [3] Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong. An ultrawideband linear-to-circular polarization converter based on multiphysics regulation. Acta Physica Sinica, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [4] Jiang Yan-Nan, Wang Yang, Ge De-Biao, Li Si-Min, Cao Wei-Ping, Gao Xi, Yu Xin-Hua. An ultra-wideband absorber based on graphene. Acta Physica Sinica, 2016, 65(5): 054101. doi: 10.7498/aps.65.054101
    [5] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [6] Xiao Xia, Song Hang, Wang Liang, Wang Zong-Jie, Lu Hong. Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Acta Physica Sinica, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [7] Guo Rong, Cao Xiang-Yu, Yuan Zi-Dong, Xu Xue-Fei. Design of a novel wideband directivity patch antenna. Acta Physica Sinica, 2014, 63(24): 244102. doi: 10.7498/aps.63.244102
    [8] Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [9] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [10] Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe. Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback. Acta Physica Sinica, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [11] Gong Yun-Rui, He Di, He Chen. Investigation of blind detection mechanism for chaotic UWB system based on generalized negentrogy. Acta Physica Sinica, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [12] Yang Rui, Xie Yong-Jun, Hu Hai-Peng, Wang Rui, Man Ming-Yuan, Wu Zhao-Hai. Ultra wideband planner inverted-F antenna with metamaterials loading. Acta Physica Sinica, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [13] An Yi, Wang Yun-Cai, Zhang Ming-Jiang, Niu Sheng-Xiao, Wang An-Bang. All optical wavelength conversion and optimum longitudinal mode selection using an injection-locked Fabry-Perot laser diode. Acta Physica Sinica, 2008, 57(8): 4995-5000. doi: 10.7498/aps.57.4995
    [14] Wang Peng, Zhao Huan, Zhao Yan-Ying, Wang Zhao-Hua, Tian Jin-Rong, Li De-Hua, Wei Zhi-Yi. Pulse width measurement of ultra-broad-bandwidth Ti: sapphire oscillator using SPIDER technique. Acta Physica Sinica, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [15] Li Pei-Li, Huang De-Xiu, Zhang Xin-Liang, Zhu Guang-Xi. Novel all-optical AND and NOR gates based on semiconductor fiber ring laser. Acta Physica Sinica, 2007, 56(2): 871-877. doi: 10.7498/aps.56.871
    [16] Tian Jin-Rong, Han Hai-Nian, Zhao Yan-Ying, Wang Peng, Zhang Wei, Wei Zhi-Yi. Ultra-broad-bandwidth femtosecond-pulse generation by chirped mirrors for dispersion compensation. Acta Physica Sinica, 2006, 55(9): 4725-4728. doi: 10.7498/aps.55.4725
    [17] Zhao Chan, Zhang Xin-Liang, Dong Jian-Ji, Huang De-Xiu. Investigation on all-optical logic AND and NOR gates based on the same structure. Acta Physica Sinica, 2006, 55(8): 4150-4155. doi: 10.7498/aps.55.4150
    [18] Li Pei-Li, Huang De-Xiu, Zhang Xin-Liang, Zhu Guang-Xi. Wavelength converter based on cross-gain modulation in multi-electrode single-port-coupled semiconductor optical amplifier. Acta Physica Sinica, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [19] Zhang Xin-Liang, Dong Jian-Ji, Wang Ying, Huang De-Xiu. Experimental and theoretical investigation on novel all-optical logic AND gates. Acta Physica Sinica, 2005, 54(5): 2066-2071. doi: 10.7498/aps.54.2066
    [20] Wang Yun-Cai. Experimental study on the timing jitter of gain-switched laser diodes with photo n injection. Acta Physica Sinica, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
Metrics
  • Abstract views:  7139
  • PDF Downloads:  41
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2018
  • Accepted Date:  08 April 2019
  • Available Online:  01 July 2019
  • Published Online:  20 July 2019

/

返回文章
返回