Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ab initio calculation of hyperfine-structure constant A of Fr and evaluation of magnetic dipole moments of Fr isotopes

Lou Bing-Qiong Li Fang Wang Pei-Yan Wang Li-Ming Tang Yong-Bo

Citation:

Ab initio calculation of hyperfine-structure constant A of Fr and evaluation of magnetic dipole moments of Fr isotopes

Lou Bing-Qiong, Li Fang, Wang Pei-Yan, Wang Li-Ming, Tang Yong-Bo
PDF
HTML
Get Citation
  • As the heaviest atom in alkali-metal elements, Fr atom has been regarded as a candidate for the search of the permanent electric dipole moment of the electron and of parity-nonconservation effects. Accurate knowledge of Fr atomic properties is of great interest. In this work, we use a relativistic coupled-cluster method to calculate the magnetic dipole hyperfine structure constants for nS (n = 7-12), nP (n = 7-12) and nD (n = 6-11) states of 212Fr. A finite B-spline basis set is used to expand the Dirac radial function, including completely the single and double excitation in correlation calculation. Our results are compared with available theoretical and experimental values. The comparison shows that our method can offer accurate calculation of magnetic dipole hyperfine structure constant. For 7P state the differences between our results and experimental values are within 1%. The magnetic dipole hyperfine structure constants for 12S, nP (n = 9-12) and nD (n = 10-11) states are reported for the first time, which are very useful as benchmarks for experimental measurements and calculations by other theoretical methods of these quantities. In the relativistic coupled-cluster theoretical framework, we study the electron correlation effect on hyperfine-structure constant A for the S, P, and D states of Fr. We observe that the electron correlation effect is very important for hyperfine-structure constant properties. The D state has a considerable correlation effect. At the same time, we also investigate contribution trends of individual electron correlation effects involving direct, core-polarization and pair-correlation ones in S, P, and D Rydberg series. It is found that the dominant contributions for the S1/2, P1/2,3/2 and nD3/2 (n = 7-11) states are to from the direct effect; however, the dominant contributions for the 6D3/2, and nD5/2 (n = 6-11) states are due to the pair-correlation and the core-polarization, respectively. For D5/2 states, there is very strong cancellation among these individual correlation effects. The knowledge of these correlation trends is useful for studying the permanent electric dipole moment and parity-nonconservation effect of Fr in future. Moreover, the magnetic dipole moment $ {\mu}$ for each of isotopes 207−213,220−228Fr is determined by combining with experimental values for magnetic dipole hyperfine structure constant of 7P state. For each of isotope 207−213Fr, our magnetic dipole moment $ {\mu}$ is perfectly consistent with the experimental value, and our uncertainties are twice smaller than those in the experiments . For each of isotope 220−228Fr, our magnetic dipole moment $ {\mu}$ has a larger uncertainty, but is still in agreement with the experimental magnetic dipole moment $ {\mu}$.
      Corresponding author: Tang Yong-Bo, ybtang@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 1154094, 11774080).
    [1]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) pp533−577

    [2]

    Fischer C F, Brage T, Jönsson P 1997 Computational Atomic Structure: An MCHF Approach (UK: Institute of Physics) pp1−67

    [3]

    Jönsson P, Gaigalas G, Bieroń J, Fishcher C F, Grant I 2013 Computer Physics Communications. 184 2197Google Scholar

    [4]

    Jönsson P, He X, Fishcher C F, Grant I 2007 Computer Physics Communications. 177 597Google Scholar

    [5]

    Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948Google Scholar

    [6]

    Dzuba V A, Johnson W R 1998 Phys. Rev. A 57 2459Google Scholar

    [7]

    Angstmann E J, Dzuba V A, Flambaum V V 2004 Phys. Rev. A 70 014102Google Scholar

    [8]

    Dinh T H, Dzuba V A, Flambaum V V, Ginges J S M 2008 Phys. Rev. A 78 054501Google Scholar

    [9]

    Kozlov M G, Porsev S G, Johnson W R 2001 Phys. Rev. A 64 052107Google Scholar

    [10]

    Pal R, Safronova M S, Johnson W R, Derevianko A, Porsev S G 2007 Phys. Rev. A 75 042515Google Scholar

    [11]

    Blundell S A, Johnson W R, Liu Z W, Sapirstein 1989 Phys. Rev. A 40 2233Google Scholar

    [12]

    Eliav E, Vikas M J, Ishikawa Y, Kaldor U 2005 Chem. Phys. 311 163Google Scholar

    [13]

    Mani B K, Angom D 2011 Phys. Rev. A 83 012501Google Scholar

    [14]

    Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83 030503Google Scholar

    [15]

    Nandy D K, Singh Y, Sahoo B K 2014 Phys. Rev. A 89 062509Google Scholar

    [16]

    Borschevsky A, Eliav E, Vilkas M J, Ishikawa Y, Kaldor U 2007 Phys. Rev. A 75 042514Google Scholar

    [17]

    Eliav E, Kaldor U, Ishikawa Y 1996 Phys. Rev. A 53 3050Google Scholar

    [18]

    Chaudhuri R K, Chattopadhyay S, Mahapatra U S 2013 J. Phys. Chem. A 117 12616Google Scholar

    [19]

    Tang Y B, Lou B Q, Shi T Y 2017 Phys. Rev. A 96 022513Google Scholar

    [20]

    Tang Y B, Gao N N, Lou B Q, Shi T Y 2018 Phys. Rev. A 98 062511Google Scholar

    [21]

    Byrnes T M R, Dzuba V A, Flambaum F F, Murray D W 1999 Phys. Rev. A 59 3082Google Scholar

    [22]

    Mukherjee D, Sahoo B K, Nataraj H S, Das B P 2009 J. Phys. Chem. A 113 12549Google Scholar

    [23]

    Sakemi Y, Harada K, Hayamizu T, Itoh M, Kawamura H, Liu S, Nataraj H S, Oikawa A, Saito M, Sato T 2011 J. Phys. Conf. Ser. 302 012051Google Scholar

    [24]

    Sahoo B K, Aoki T, Das B P, Sakemi Y 2016 Phys. Rev. A 93 032520Google Scholar

    [25]

    Atutov S N, Calabrese R, Corradi L, Dainelli A, Mauro C D, Khanbekyan A, Mariotti E, Minguzzi P, Moi L, Sanguinetti S, Stancari G, Tomassetti L 2008 Proc. SPIE 7027 70270C

    [26]

    Ekström C, Ingelman S, Wannberg G, Skarestad M 1978 Physica Scripta 18 51Google Scholar

    [27]

    Coc A, Thibault C, Touchard F, Duong H T, Juncar P, Liberman S, Pinard J, Lermé J, Vialle J L, Büttgenbach S, Mueller A C, Pesnelle A, the ISOLDE Collaboration 1985 Phys. Lett. B 163 66Google Scholar

    [28]

    Coc A, Thibault C, Touchard F, Duong H T, Juncar P, Liberman S, Pinard J, Carre M, Lermé J, Vialle J L, Büttgenbach S, Mueller A C, Pesnelle A, the ISOLDE Collaboration 1987 Nucl. Phys. A 468 1Google Scholar

    [29]

    Arnold E, Borchers W, Duong H T, Juncar P, Lermé J, Lievens P, Neu W, Neugart R, Pellerin M, Pinard J, Vialle J L, Wendt K, the ISOLDE Collaboration 1990 J. Phys. B 23 3511Google Scholar

    [30]

    Arnold E, Borchers W, Carré M, Duong H T, Juncar P, Lermé J, Liberman S, Neu W, Neugart R, Otten W, Pellerin M, Pinard J, Pesnelle A, Vialle J L, Wendt K, the ISOLDE Collaboration 1989 J. Phys. B 22 L391Google Scholar

    [31]

    Bauche J, Duong H T, Juncar P, Liberman S, Pinard J, Coc A, Thibault C, Touchard F, Lermé J, Vialle J L, Büttgenbach S, Mueller A C, Pesnelle A, the ISOLDE Collaboration 1986 J. Phys. B 19 L593Google Scholar

    [32]

    Grossman J S, Orozco L A, Simsarian J E, Sprouse G D, Zhao W Z 1999 Phys. Rev. Lett. 83 935Google Scholar

    [33]

    Sansonetti J E 2007 J. Phys. Chem. Ref. Data 36 497Google Scholar

    [34]

    Gomez E, Aubin S, Orozco L A, Sprouse G D, Iskrenova-Tchoukova E, Safronova M S 2008 Phys. Rev. Lett. 100 172502Google Scholar

    [35]

    Dzuba V A, Flambaum V V, Sushkov O P 1984 J. Phys. B: At. Mol. Phys. 17 1953Google Scholar

    [36]

    Owusu A, Dougherty R W, Gowri G, Das T P 1997 Phys. Rev. A 56 305Google Scholar

    [37]

    Safronova M S, Johnson W R, Derevianko A 1999 Phys. Rev. A 60 4476Google Scholar

    [38]

    Sahoo B K, Nandy D K, Das B P, Sakemi Y 2015 Phys. Rev. A 91 042507Google Scholar

    [39]

    Duong H T, Juncar P, Liberman S, Mueller A C, Neugart R, Otten E W, Peuse B, Pinard J, Stoke H H, Thibault C, Touchard F, Vialle J L, Wendt K, the ISOLDE Collaboration 1987 Europhys. Lett. 3 175Google Scholar

    [40]

    Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V, Yudin V I 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [41]

    Kien F L, Balykin V I, Hakuta K 2005 J. Phys. Soc. Jpn. 74 910Google Scholar

    [42]

    Ingvar L 1978 Int. J. Quantum Chem. 12 33

    [43]

    Sinha D, Mukhopadhyay S, Mukherjee D 1986 Chem. Phys. Lett. 129 369Google Scholar

    [44]

    Blundell S A, Johnson W R, Sapiratein J 1991 Phys. Rev. A 43 3407Google Scholar

    [45]

    Porsev S G, Beloy K, Derevianko A 2010 Phys. Rev. D 82 036008Google Scholar

    [46]

    Sahoo B K, Sur C, Beier T, Das B P, Chaudhuri R K, Mukherjee D 2007 Phys. Rev. A 75 042504Google Scholar

    [47]

    Safronova M S, Safronova U I 2011 Phys. Rev. A 83 052508Google Scholar

  • 图 1  212Fr原子S1/2, P1/2, P3/2, D3/2和D5/2态磁偶极超精细结构常数中的电子关联效应

    Figure 1.  Electron correlation effects in hyperfine-structure constant A for S1/2, P1/2, P3/2, D3/2 and D5/2 states of 212Fr.

    图 2  直接效应ADF、核极化效应ACP、对关联效应APC, 以及相对于CCSD的3种效应的总和AT = ADF + ACP + APC, 针对主量子数n的S, P和D态的结果A的比率 (a) ADF/A; (b) ACP/A; (c) APC/A; (d) AT/A

    Figure 2.  Ratios of direct effect ADF, core polarization effect ACP, pair correlation effect APC, and the total of the three effects AT = ADF + APC + ACP to the CCSD, results A for S, P and D states against the principal quantum number n: (a) ADF/A; (b) ACP/A; (c) APC/A; (d) AT/A.

    表 1  212Fr原子S态的超精细结构常数A (单位: MHz)

    Table 1.  Hyperfine-structure constant A for the S states of 212Fr in MHz.

    能级${A_{{\rm{DF}}}}$${A_{{\rm{CCSD}}}}$$\varDelta /$%Ref.[38]实验值
    7S1/26001.769403.5630.939124(94)9064.2(2)[27]
    9064.4(1.5)[39]
    8S1/21538.032014.1017.371986(19)
    9S1/2631.98792.1913.66784(9)
    10S1/2321.24396.8611.95419(9)401(5)[29]
    11S1/2185.41225.7111.10212(9)225(3)[29]
    12S1/2116.42141.2510.80
    DownLoad: CSV

    表 2  212Fr原子P态的超精细结构常数A (单位: MHz)

    Table 2.  Hyperfine-structure constant A for the P states of 212Fr in MHz.

    能级${A_{{\rm{DF}}}}$${A_{{\rm{CCSD}}}}$$\varDelta /$%Ref.[38]实验值
    7P1/2642.481198.1041.961181(9)1189.1(4.6)[28]
    1187.1(6.8)[39]
    1192.0(2)[32]
    8P1/2228.04372.0433.66371(5)373.0(1)[39]
    9P1/2106.78167.2130.88
    10P1/258.3589.5329.46
    11P1/235.2653.3828.51
    12P1/222.8834.2427.68
    7P3/251.0597.8843.5596(3)97.2(1)[27]
    97.2(1)[39]
    8P3/218.6732.5137.8232(3)32.8(1)[39]
    9P3/28.8915.0035.83
    10P3/24.918.1534.75
    11P3/23.004.9234.01
    12P3/21.973.2033.33
    DownLoad: CSV

    表 3  212Fr原子D态的超精细结构常数A (单位: MHz)

    Table 3.  Hyperfine-structure constant A for the D states of 212Fr in MHz.

    能级${A_{{\rm{DF}}}}$${A_{{\rm{CCSD}}}}$$\varDelta / $%Ref.[38]实验值
    6D3/233.2592.9161.2779(5)
    7D3/216.8230.1739.6529(3)
    8D3/28.6513.8132.2013(1)13.0(6)[29]
    9D3/24.937.5028.757(1)7.1(7)[29]
    10D3/23.064.5226.64
    11D3/22.032.9324.97
    6D5/213.14–53.92126.38–54(5)
    7D5/26.32–13.64150.21–15(3)
    8D5/23.20–5.67161.12–6(1)–7.1(6)[29]
    9D5/21.81–2.96166.96–3.3(6)–3.6(4)[29]
    10D5/21.12–1.72170.59
    11D5/20.74–1.10173.16
    DownLoad: CSV

    表 4  Fr原子同位素的磁偶极矩$\mu$

    Table 4.  Magnetic dipole moment $\mu$ of Fr isotope.

    同位素核自旋7P1/27P3/2${\mu}$
    ${A_{{\rm{expt}}.}}$[33]${{\mu} _{1/2}}$${A_{{\rm{expt}}.}}$[33]${{\mu} _{3/2}}$${{\mu} _{{\rm{present}}}}$${{\mu} _{{\rm{expt}}{\rm{.}}}}$[33]
    207Fr9/290.7(6)3.85(3)3.85(3)3.89(9)
    208Fr7874.8(3)4.723(2)72.4(5)4.784(33)4.753(33)4.75(10)
    209Fr9/21127.9(2)3.914(1)93.3(5)3.963(21)3.939(22)3.95(8)
    210Fr6946.3(3)4.379(1)78.0(2)4.418(11)4.399(20)4.40(9)
    211Fr9/21142.1(2)3.964(1)94.9(3)4.031(13)3.998(34)4.00(8)
    212Fr51187(7)4.577(26)97.2(1)4.588(5)4.583(30)4.62(9)
    213Fr9/21150(8)3.991(28)95.3(3)4.047(13)4.019(30)4.02(8)
    220Fr1–73.2(5)–0.691(5)–0.691(5)–0.67(1)
    221Fr5/2808(12)1.558(23)65.5(6)1.545(14)1.552(25)1.58(3)
    222Fr233(1)0.623(19)0.623(19)0.63(1)
    223Fr3/283.3(9)1.179(13)1.179(13)1.17(2)
    224Fr142.1(7)0.397(7)0.397(7)0.40(1)
    225Fr3/277(3)1.090(42)1.090(42)1.07(2)
    226Fr17(1)0.066(9)0.066(9)0.071(2)
    227Fr1/2316(2)1.491(9)1.491(9)1.50(3)
    228Fr2–41(2)–0.77(4)–0.77(4)–0.76(2)
    DownLoad: CSV
  • [1]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) pp533−577

    [2]

    Fischer C F, Brage T, Jönsson P 1997 Computational Atomic Structure: An MCHF Approach (UK: Institute of Physics) pp1−67

    [3]

    Jönsson P, Gaigalas G, Bieroń J, Fishcher C F, Grant I 2013 Computer Physics Communications. 184 2197Google Scholar

    [4]

    Jönsson P, He X, Fishcher C F, Grant I 2007 Computer Physics Communications. 177 597Google Scholar

    [5]

    Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948Google Scholar

    [6]

    Dzuba V A, Johnson W R 1998 Phys. Rev. A 57 2459Google Scholar

    [7]

    Angstmann E J, Dzuba V A, Flambaum V V 2004 Phys. Rev. A 70 014102Google Scholar

    [8]

    Dinh T H, Dzuba V A, Flambaum V V, Ginges J S M 2008 Phys. Rev. A 78 054501Google Scholar

    [9]

    Kozlov M G, Porsev S G, Johnson W R 2001 Phys. Rev. A 64 052107Google Scholar

    [10]

    Pal R, Safronova M S, Johnson W R, Derevianko A, Porsev S G 2007 Phys. Rev. A 75 042515Google Scholar

    [11]

    Blundell S A, Johnson W R, Liu Z W, Sapirstein 1989 Phys. Rev. A 40 2233Google Scholar

    [12]

    Eliav E, Vikas M J, Ishikawa Y, Kaldor U 2005 Chem. Phys. 311 163Google Scholar

    [13]

    Mani B K, Angom D 2011 Phys. Rev. A 83 012501Google Scholar

    [14]

    Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83 030503Google Scholar

    [15]

    Nandy D K, Singh Y, Sahoo B K 2014 Phys. Rev. A 89 062509Google Scholar

    [16]

    Borschevsky A, Eliav E, Vilkas M J, Ishikawa Y, Kaldor U 2007 Phys. Rev. A 75 042514Google Scholar

    [17]

    Eliav E, Kaldor U, Ishikawa Y 1996 Phys. Rev. A 53 3050Google Scholar

    [18]

    Chaudhuri R K, Chattopadhyay S, Mahapatra U S 2013 J. Phys. Chem. A 117 12616Google Scholar

    [19]

    Tang Y B, Lou B Q, Shi T Y 2017 Phys. Rev. A 96 022513Google Scholar

    [20]

    Tang Y B, Gao N N, Lou B Q, Shi T Y 2018 Phys. Rev. A 98 062511Google Scholar

    [21]

    Byrnes T M R, Dzuba V A, Flambaum F F, Murray D W 1999 Phys. Rev. A 59 3082Google Scholar

    [22]

    Mukherjee D, Sahoo B K, Nataraj H S, Das B P 2009 J. Phys. Chem. A 113 12549Google Scholar

    [23]

    Sakemi Y, Harada K, Hayamizu T, Itoh M, Kawamura H, Liu S, Nataraj H S, Oikawa A, Saito M, Sato T 2011 J. Phys. Conf. Ser. 302 012051Google Scholar

    [24]

    Sahoo B K, Aoki T, Das B P, Sakemi Y 2016 Phys. Rev. A 93 032520Google Scholar

    [25]

    Atutov S N, Calabrese R, Corradi L, Dainelli A, Mauro C D, Khanbekyan A, Mariotti E, Minguzzi P, Moi L, Sanguinetti S, Stancari G, Tomassetti L 2008 Proc. SPIE 7027 70270C

    [26]

    Ekström C, Ingelman S, Wannberg G, Skarestad M 1978 Physica Scripta 18 51Google Scholar

    [27]

    Coc A, Thibault C, Touchard F, Duong H T, Juncar P, Liberman S, Pinard J, Lermé J, Vialle J L, Büttgenbach S, Mueller A C, Pesnelle A, the ISOLDE Collaboration 1985 Phys. Lett. B 163 66Google Scholar

    [28]

    Coc A, Thibault C, Touchard F, Duong H T, Juncar P, Liberman S, Pinard J, Carre M, Lermé J, Vialle J L, Büttgenbach S, Mueller A C, Pesnelle A, the ISOLDE Collaboration 1987 Nucl. Phys. A 468 1Google Scholar

    [29]

    Arnold E, Borchers W, Duong H T, Juncar P, Lermé J, Lievens P, Neu W, Neugart R, Pellerin M, Pinard J, Vialle J L, Wendt K, the ISOLDE Collaboration 1990 J. Phys. B 23 3511Google Scholar

    [30]

    Arnold E, Borchers W, Carré M, Duong H T, Juncar P, Lermé J, Liberman S, Neu W, Neugart R, Otten W, Pellerin M, Pinard J, Pesnelle A, Vialle J L, Wendt K, the ISOLDE Collaboration 1989 J. Phys. B 22 L391Google Scholar

    [31]

    Bauche J, Duong H T, Juncar P, Liberman S, Pinard J, Coc A, Thibault C, Touchard F, Lermé J, Vialle J L, Büttgenbach S, Mueller A C, Pesnelle A, the ISOLDE Collaboration 1986 J. Phys. B 19 L593Google Scholar

    [32]

    Grossman J S, Orozco L A, Simsarian J E, Sprouse G D, Zhao W Z 1999 Phys. Rev. Lett. 83 935Google Scholar

    [33]

    Sansonetti J E 2007 J. Phys. Chem. Ref. Data 36 497Google Scholar

    [34]

    Gomez E, Aubin S, Orozco L A, Sprouse G D, Iskrenova-Tchoukova E, Safronova M S 2008 Phys. Rev. Lett. 100 172502Google Scholar

    [35]

    Dzuba V A, Flambaum V V, Sushkov O P 1984 J. Phys. B: At. Mol. Phys. 17 1953Google Scholar

    [36]

    Owusu A, Dougherty R W, Gowri G, Das T P 1997 Phys. Rev. A 56 305Google Scholar

    [37]

    Safronova M S, Johnson W R, Derevianko A 1999 Phys. Rev. A 60 4476Google Scholar

    [38]

    Sahoo B K, Nandy D K, Das B P, Sakemi Y 2015 Phys. Rev. A 91 042507Google Scholar

    [39]

    Duong H T, Juncar P, Liberman S, Mueller A C, Neugart R, Otten E W, Peuse B, Pinard J, Stoke H H, Thibault C, Touchard F, Vialle J L, Wendt K, the ISOLDE Collaboration 1987 Europhys. Lett. 3 175Google Scholar

    [40]

    Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V, Yudin V I 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [41]

    Kien F L, Balykin V I, Hakuta K 2005 J. Phys. Soc. Jpn. 74 910Google Scholar

    [42]

    Ingvar L 1978 Int. J. Quantum Chem. 12 33

    [43]

    Sinha D, Mukhopadhyay S, Mukherjee D 1986 Chem. Phys. Lett. 129 369Google Scholar

    [44]

    Blundell S A, Johnson W R, Sapiratein J 1991 Phys. Rev. A 43 3407Google Scholar

    [45]

    Porsev S G, Beloy K, Derevianko A 2010 Phys. Rev. D 82 036008Google Scholar

    [46]

    Sahoo B K, Sur C, Beier T, Das B P, Chaudhuri R K, Mukherjee D 2007 Phys. Rev. A 75 042504Google Scholar

    [47]

    Safronova M S, Safronova U I 2011 Phys. Rev. A 83 052508Google Scholar

  • [1] Zhong Zhen-Xiang. Review of the hyperfine structure theory of hydrogen molecular ions. Acta Physica Sinica, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [2] Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong. Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+ and B+ ions. Acta Physica Sinica, 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [3] Wang Xia, Jia Fang-Shi, Yao Ke, Yan Jun, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Hyperfine interaction constants and Landé g factors of clock states of Al-like ions. Acta Physica Sinica, 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [4] Wang Xin, Kang Zhe-Ming, Liu Long, Fan Xian-Guang. Baseline correction algorithm for Raman spectra based on median filtering and un-uniform B-spline. Acta Physica Sinica, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [5] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [6] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min. Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [7] He Yong-Lin, Zhou Xiao-Xin, Li Xiao-Yong. Study of Rydberg states of lithium in a static electric field using B-spline functions. Acta Physica Sinica, 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [8] Meng Hui-Yan, Kang Shuai, Shi Ting-Yun, Zhan Ming-Sheng. Model potential calculations of oscillator strength spectra of lithium atoms in parallel electric and magnetic fields. Acta Physica Sinica, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [9] Hui Ping. Studies of quantum confinement effects of excitons in semiconductor crystallites with the B-spline technique. Acta Physica Sinica, 2005, 54(9): 4324-4328. doi: 10.7498/aps.54.4324
    [10] Chen Sui-Yuan, Liu Chang-Sheng, Li Hui-Li, Cui Tong. Hyperfine stucture during nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy irradiated by laser. Acta Physica Sinica, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [11] Wang Xiao-Feng, Qiao Hao-Xue, Liu Hai-Lin, Yu Guo-Ping. Resonance enhancement of the endohedrally confined hydrogen-like system. Acta Physica Sinica, 2005, 54(8): 3530-3534. doi: 10.7498/aps.54.3530
    [12] Chen Sui-Yuan, Liu Chang-Sheng, Fu Gui-Qin, Wang Zhang-Tao, Cai Qing-Kui. . Acta Physica Sinica, 2002, 51(8): 1711-1715. doi: 10.7498/aps.51.1711
    [13] HAN LI-HONG, GOU BING-CONG, WANG FEI. RELATIVISTIC ENERGIES AND FINE STRUCTURES OF THE EXCITED STATES FOR BERYLLIUM-LIKE BⅡ. Acta Physica Sinica, 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
    [14] CHEN ZHI-JUN, MA HONG-LIANG, CHEN MIAO-HUA, LI MAO-SHENG, SHI WEI, LU FU-QUAN, TANG JIA-YONG. THE HYPERFINE STRUCTURE OF BaⅡ. Acta Physica Sinica, 1999, 48(11): 2038-2041. doi: 10.7498/aps.48.2038
    [15] JIANG ZE-HUI, HE XIAO-DONG, HAN JIE-CAI, DU SHAN-YI. AN ESTIMATE OF THE DIPOLE MOMENT OF PARTICLE CLUSTERS. Acta Physica Sinica, 1999, 48(6): 1037-1043. doi: 10.7498/aps.48.1037
    [16] QIAO HAO-XUE, RAO JIAN-GUO, LI BAI-WEN. CALCULATION OF THE ELECTRONIC CORRELATION-ENERGY IN HELIUM ATOMS BY MEANS OF B SPLINE TECHNIQUE. Acta Physica Sinica, 1997, 46(11): 2104-2110. doi: 10.7498/aps.46.2104
    [17] ZHU SHI-YAO, XU JI-HUA, ZHAO SHU-JUN, LI XING. INVESTIGATION OF THE FINE STRUCTURE OF BORON'S Kα X-RAY SPECTRUM. Acta Physica Sinica, 1991, 40(9): 1411-1416. doi: 10.7498/aps.40.1411
    [18] . Acta Physica Sinica, 1964, 20(8): 822-824. doi: 10.7498/aps.20.822
    [19] О СВЕРХТОНКИХ СТРУКТУРАХ La57. Acta Physica Sinica, 1958, 14(6): 488-496. doi: 10.7498/aps.14.488
    [20] CHAO KUANG-TSENG, CHENG CHI-HAO. INTENSITY DISTRIBUTION OF THE HYPERFINE STRUCTURE OF MERCURY RESONANCE RADIATION. Acta Physica Sinica, 1955, 11(4): 359-362. doi: 10.7498/aps.11.359
Metrics
  • Abstract views:  10192
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2019
  • Accepted Date:  09 March 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回