Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel scheme of quantum state tomography based on quantum algorithms

Yang Le Li Kai Dai Hong-Yi Zhang Ming

Citation:

A novel scheme of quantum state tomography based on quantum algorithms

Yang Le, Li Kai, Dai Hong-Yi, Zhang Ming
PDF
HTML
Get Citation
  • Recently, we try to answer the following question: what will happen to our life if quantum computers can be physically realized. In this research, we explore the impact of quantum algorithms on the time complexity of quantum state tomography based on the linear regression algorithm if quantum states can be efficiently prepared by classical information and quantum algorithms can be implemented on quantum computers. By studying current quantum algorithms based on quantum singular value decomposition (SVE) of calculating matrix multiplication, solving linear equations and eigenvalue and eigenstate estimation and so on, we propose a novel scheme to complete the mission of quantum state tomography. We show the calculation based on our algorithm as an example at last. Although quantum state preparations and extra measurements are indispensable in our quantum algorithm scheme compared with the existing classical algorithm, the time complexity of quantum state tomography can be remarkably declined. For a quantum system with dimension d, the entire quantum scheme can reduce the time complexity of quantum state tomography from $ O(d^{4}) $ to $ O(d\mathrm{poly}\log d) $ when both the condition number $ \kappa $ of related matrices and the reciprocal of precision $ \varepsilon $ are $ O(\mathrm{poly}\log d) $, and quantum states of the same order $ O(d) $ can be simultaneously prepared. This is in contrast to the observation that quantum algorithms can reduce the time complexity of quantum state tomography to $O(d^3) $ when quantum states can not be efficiently prepared. In other words, the preparing of quantum states efficiently has become a bottleneck constraining the quantum acceleration.
      Corresponding author: Zhang Ming, yas-zm@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61673389, 61273202, 61134008).
    [1]

    Teo Y S 2016 Introduction to quantum-state estimation (Singapore: World Scientific Press) pp1−5, 23−31

    [2]

    Häffner H, Hänsel W, Roos C, et al 2005 Nature 438 643Google Scholar

    [3]

    James D F V, Kwiat P G, Munro W J, et al. 2001 Phys. Rev. A 64 052312Google Scholar

    [4]

    Qi B, Hou Z, Li L, et al. 2013 Sci. Rep. 3 3496Google Scholar

    [5]

    Hou Z, Zhong H-S, Tian Y, et al. 2016 New J. Phys. 18 083036Google Scholar

    [6]

    Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504Google Scholar

    [7]

    Teo Y S, Zhu H, Englert B G, et al. 2011 Phys. Rev. Lett. 107 020404Google Scholar

    [8]

    Blume-Kohout R 2010 New J. Phys. 12 043034Google Scholar

    [9]

    Huszár F, Houlsby N M T 2012 Phys. Rev. A 85 052120Google Scholar

    [10]

    Shor P W 1999 SIREV 41 303Google Scholar

    [11]

    Abrams D S, Lloyd S 1999 Phys. Rev. Lett. 83 5162Google Scholar

    [12]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [13]

    Wiebe N, Braun D, Lloyd S 2012 Phys. Rev. Lett. 109 050505Google Scholar

    [14]

    陆思聪, 郑昱, 王晓霆, 吴热冰 2017 控制理论与应用 34 1429

    Lu S C, Zheng Y, Wang X T, Wu R B 2017 Contl. Theor. Appl. 34 1429

    [15]

    Smolin J A, Gambetta J M, Smith G 2012 Phys. Rev. Lett. 108 070502Google Scholar

    [16]

    Shao C 2018 arXiv preprint arXiv: 1803 01601

    [17]

    Wossnig L, Zhao Z K, Prakash A 2018 Phys. Rev. Lett. 120 050502Google Scholar

    [18]

    Høyer P, Neerbek J, Shi Y 2002 Algorithmica 34 429Google Scholar

    [19]

    Cheng S T, Wang C Y 2006 IEEE Trans. Circuits Syst. I: Reg. Papers 53 316Google Scholar

    [20]

    Kerenidis I, Prakash A 2017 Proceedings of 8th Innovations in Theoretical Computer Science Conference Berkeley, CA, USA, January 9−11, 2017 p1

    [21]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (10th Anniversary Edition) (Cambridge: Cambridge University Press) pp185−188

  • 图 1  基于线性回归估计的经典重构算法

    Figure 1.  Classical algorithm of quantum state tomography via linear regression

    图 2  整体量子算法简明过程

    Figure 2.  Concise process of the whole quantum algorithm

    图 3  量子算法过程1: 基于线性回归模型重构算法的量子算法

    Figure 3.  Quantum algorithm process 1: quantum algorithm based on quantum state tomography via linear regression

    图 4  量子算法过程2

    Figure 4.  Quantum algorithm process 2

    表 1  量子态重构过程不同环节的量子算法与经典算法时间复杂度的对比

    Table 1.  Time complexity comparison of each step between quantum algorithm and classical algorithm for reconstructing quantum state

    算法过程 时间复杂度
    量子态制备过程: 经典 量子
    1) ${ X}\rightarrow|{ X}\rangle$ $O(d\log (d)/\varepsilon ^2)$
    2) ${ Y}\rightarrow|{ Y}\rangle$ $O(d\log (d)/\varepsilon ^2)$
    3) $\{\varOmega_i\}\rightarrow\{|\varOmega_i\rangle\}$ $O(d\log (d)/\varepsilon ^2)$
    最小二乘求解过程: 经典 量子
    1) ${ X}^{\rm T}{ X}$ $O(d^4)$ $O(\kappa^3 d/\varepsilon )$
    2) $({ X}^{\rm T}{ X})^{-1}$ $O(d^4)$ $O(\kappa^2\sqrt{d}\mathrm{poly}\log(d)/\varepsilon )$
    3) ${ X}^{\rm T}{ Y}$ $O(d^4)$ $O(\kappa^3 d/\varepsilon )$
    使用估计出的参数重构密度矩阵$\hat{\mu}$: 经典 量子
    1) ${ I}/d+\sum_{i=1}^{d}\hat{\varTheta}_i\varOmega_i$ $O(d^4)$ $O(\kappa^3 d/\varepsilon )$
    寻找与矩阵$\hat{\mu}$最接近的目标密度矩阵$\hat{\rho}$: 经典 量子
    1) 求解矩阵$\hat{\mu}$的本征值和本征态$\{|\bar{\mu}_i\rangle|\hat{\mu}_i\rangle\}$ $O(d^3)$ $O(\kappa\sqrt{r}\mathrm{poly}\log d/\varepsilon )$
    2) 测量得到$\hat{\mu}$本征值数值$\{\bar{\mu} _i\}$ $O(d)$
    3) 将$\hat{\mu}$的本征值数据制备成量子态 $\{\bar{\mu} _i\}\rightarrow\{|\bar{\mu} _i\rangle\}$ $O(d\log(d)/\varepsilon ^2)$
    4) 对矩阵$\hat{\mu}$的本征值进行排序 $O(d)$ $O((\log d)^2)$
    5) 一般运算得到矩阵$\hat{\rho}$的本征值$\{\lambda_i\}$或$\{|\lambda_i\rangle\}$ $O(d)$ $O(d)$
    6) 由$\hat{\rho}$的本征值及$\{|\hat{\mu}_i\rangle\}$得到$\hat{\rho}=\sum_i\lambda_i|\hat{\mu}_i\rangle\langle\hat{\mu}_i|$ $O(d^3)$ $O(\kappa^3 \sqrt{d}/\varepsilon )$
    DownLoad: CSV

    表 A1  求解厄米矩阵本征值和本征态的量子算法[17]

    Table A1.  Quantum algorithm for calculating the eigenvalues and eigenstates of Hermite matrix[17]

    1) 制备输入态$|{{b}}\rangle=\sum_i\beta_i|{{v}}_i\rangle$, 其中${{v}}_i$是矩阵A的奇异向量
    2) 分别对矩阵A及${ A}+\eta { I}$使用奇异值估计算法, 精度$\delta<1/2\kappa$并且$\eta=1/\kappa$, 得到$\sum_i\beta_i|{{v}}_i\rangle_{ A}||\bar{\lambda}_i|\rangle_B||\bar{\lambda}_i+\eta|\rangle_C\rangle$
    3) 增加一辅助寄存器D, 当寄存器B的值大于C 时, 将D置为1, 然后应用一受控于此辅助位的条件相位门:
    $\qquad\sum_i(-1)^{f_i}\beta_i|{{v}}_i\rangle_{ A}||\bar{\lambda}_i|\rangle_B||\bar{\lambda}_i+\eta|\rangle_C\rangle|f_i\rangle_D$
    4) 对寄存器C进行量子算法的逆运算, 得到态
    $\qquad\sum_i(-1)^{f_i}\beta_i|{{v}}_i\rangle_{ A}||\bar{\lambda}_i|\rangle_B|f_i\rangle_D$
    5) 将奇异向量$|{{v}}_i\rangle_{ A}$转化到矩阵的本征态$|{{\mu}}_i\rangle_{ A}$上: 相应于正本征值的奇异向量不变, 相应于负本征值的奇异向量乘以–1 , 得到
    $\qquad\sum_i(-1)^{f_i}\beta_i|{{\mu}}_i\rangle_{ A}||\bar{\lambda}_i|\rangle_B$
    DownLoad: CSV
  • [1]

    Teo Y S 2016 Introduction to quantum-state estimation (Singapore: World Scientific Press) pp1−5, 23−31

    [2]

    Häffner H, Hänsel W, Roos C, et al 2005 Nature 438 643Google Scholar

    [3]

    James D F V, Kwiat P G, Munro W J, et al. 2001 Phys. Rev. A 64 052312Google Scholar

    [4]

    Qi B, Hou Z, Li L, et al. 2013 Sci. Rep. 3 3496Google Scholar

    [5]

    Hou Z, Zhong H-S, Tian Y, et al. 2016 New J. Phys. 18 083036Google Scholar

    [6]

    Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504Google Scholar

    [7]

    Teo Y S, Zhu H, Englert B G, et al. 2011 Phys. Rev. Lett. 107 020404Google Scholar

    [8]

    Blume-Kohout R 2010 New J. Phys. 12 043034Google Scholar

    [9]

    Huszár F, Houlsby N M T 2012 Phys. Rev. A 85 052120Google Scholar

    [10]

    Shor P W 1999 SIREV 41 303Google Scholar

    [11]

    Abrams D S, Lloyd S 1999 Phys. Rev. Lett. 83 5162Google Scholar

    [12]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [13]

    Wiebe N, Braun D, Lloyd S 2012 Phys. Rev. Lett. 109 050505Google Scholar

    [14]

    陆思聪, 郑昱, 王晓霆, 吴热冰 2017 控制理论与应用 34 1429

    Lu S C, Zheng Y, Wang X T, Wu R B 2017 Contl. Theor. Appl. 34 1429

    [15]

    Smolin J A, Gambetta J M, Smith G 2012 Phys. Rev. Lett. 108 070502Google Scholar

    [16]

    Shao C 2018 arXiv preprint arXiv: 1803 01601

    [17]

    Wossnig L, Zhao Z K, Prakash A 2018 Phys. Rev. Lett. 120 050502Google Scholar

    [18]

    Høyer P, Neerbek J, Shi Y 2002 Algorithmica 34 429Google Scholar

    [19]

    Cheng S T, Wang C Y 2006 IEEE Trans. Circuits Syst. I: Reg. Papers 53 316Google Scholar

    [20]

    Kerenidis I, Prakash A 2017 Proceedings of 8th Innovations in Theoretical Computer Science Conference Berkeley, CA, USA, January 9−11, 2017 p1

    [21]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (10th Anniversary Edition) (Cambridge: Cambridge University Press) pp185−188

  • [1] Liu Zhao. Fractionalized topological states in moiré superlattices. Acta Physica Sinica, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [2] Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin. Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [3] Li Tian-Yin, Xing Hong-Xi, Zhang Dan-Bo. Quantum computing based high-energy nuclear physics. Acta Physica Sinica, 2023, 72(20): 200303. doi: 10.7498/aps.72.20230907
    [4] Zhou Wen-Hao, Wang Yao, Weng Wen-Kang, Jin Xian-Min. Research progress of integrated optical quantum computing. Acta Physica Sinica, 2022, 71(24): 240302. doi: 10.7498/aps.71.20221782
    [5] Li Qing-Hui, Yao Wen-Xiu, Li Fan, Tian Long, Wang Ya-Jun, Zheng Yao-Hui. Manipulations and quantum tomography of bright squeezed states. Acta Physica Sinica, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [6] Ding Chen, Li Tan, Zhang Shuo, Guo Chu, Huang He-Liang, Bao Wan-Su. A quantum state readout method based on a single ancilla qubit. Acta Physica Sinica, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [7] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [8] Gong Long-Yan, Yang Hui, Zhao Sheng-Mei. Influence of intermediated measurements on quantum statistical complexity of single driven qubit. Acta Physica Sinica, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [9] Tian Yu-Ling, Feng Tian-Feng, Zhou Xiao-Qi. Collaborative quantum computation with redundant graph state. Acta Physica Sinica, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [10] Yang Xiao-Jing, Yang Yang, Li Huai-Zhou, Zhong Ning. Analysis of resting state functional magnetic resonance imaging signal complexity of adult major depressive disorder based on fuzzy approximate entropy. Acta Physica Sinica, 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [11] Sun Ke-Hui, He Shao-Bo, Yin Lin-Zi, Duo Li-Kun. Application of FuzzyEn algorithm to the analysis of complexity of chaotic sequence. Acta Physica Sinica, 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [12] Sun Ke-Hui, He Shao-Bo, Sheng Li-Yuan. Complexity analysis of chaotic sequence based on the intensive statistical complexity algorithm. Acta Physica Sinica, 2011, 60(2): 020505. doi: 10.7498/aps.60.020505
    [13] Yang Ru, Zhang Bo, Zhao Shou-Bai, Lao Yu-Jin. Arithmetic complexity of discrete map of converter based on symbol time series. Acta Physica Sinica, 2010, 59(6): 3756-3762. doi: 10.7498/aps.59.3756
    [14] Ma Rui-Qiong, Li Yong-Fang, Shi Jian. Measurement of quantum states with incoherent light. Acta Physica Sinica, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [15] Zhang Miao, Jia Huan-Yu, Ji Xiao-Hui, Si Kun, Wei Lian-Fu. Generation of squeezed quantum states of a single trapped cold ion. Acta Physica Sinica, 2008, 57(12): 7650-7657. doi: 10.7498/aps.57.7650
    [16] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [17] Hu Xue-Ning, Li Xin-Qi. Quantum measurement of single electron state by a quantum point contact. Acta Physica Sinica, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
    [18] Liu Qing, Zou Dan, Ji Ying-Hua. Time evolution of mesoscopic RLC circuit driven by an alternating current source. Acta Physica Sinica, 2006, 55(4): 1596-1601. doi: 10.7498/aps.55.1596
    [19] Wang Zhong-Chun. Effect of external field on the fidelity of quantum states in the two-atom Tavis-Cummings model. Acta Physica Sinica, 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
    [20] Liu Tang-Kun, Wang Ji-Suo, Liu Xiao-Jun, Zhan Ming-Sheng. . Acta Physica Sinica, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
Metrics
  • Abstract views:  11919
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  27 January 2019
  • Accepted Date:  27 April 2019
  • Available Online:  01 July 2019
  • Published Online:  20 July 2019

/

返回文章
返回