Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional discrete element technology investigated ignition mechanism of octahydro-1, 3, 5, 7-tetranitro -1, 3, 5, 7-tetrazocine particles under drop hammer impact

Jiang Cheng-Lu Wang Ang Zhao Feng Shang Hai-Lin Zhang Ming-Jian Liu Fu-Sheng Liu Qi-Jun

Citation:

Three-dimensional discrete element technology investigated ignition mechanism of octahydro-1, 3, 5, 7-tetranitro -1, 3, 5, 7-tetrazocine particles under drop hammer impact

Jiang Cheng-Lu, Wang Ang, Zhao Feng, Shang Hai-Lin, Zhang Ming-Jian, Liu Fu-Sheng, Liu Qi-Jun
PDF
HTML
Get Citation
  • The ignition mechanism of the explosive particles under impact has been a hot topic, but the research progress is slow. With the rapid development of computer science, the three-dimensional discrete element technique (DM3) is regarded as an efficient and intuitive method to study the explosive ignition under impact. As is well known, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is one of the most effective explosive particles in performance, which has high density and energy and thus possesses a significant application. In this paper, the deformation and ignition of HMX particles under impact of drop hammer are investigated based on the three-dimensional discrete element technique. Specifically, the computational process for shock loading as well as chemical reaction is employed in DM3 model through using the state equation of Hugoniot, the reactive model of Arrhenius, the state equation of JWL. The results show that the size, degree of accumulation, defect and the force of drop hammer can definitely influence the ignition and propagation of HMX particles. Under the same shock loading, the particles on a small scale would produce less power. On the same scale of particle, the less the number of particles, the shorter the deformation time is, so the temperature increases more easily. As for the different shapes of single particles, the deformation and ignition first appear from the ‘top’ for the spire particles, and then the deformation and ignition of flat particles happens from ‘shear’. Specifically, there are two results of the internal defect HMX particles under impact: the particles with bigger size (discrete elements 256 × 34 = 8704) have a temperature advantage near the ‘hole’, while the temperature advantage of the particles with the smaller size (discrete elements 93 × 35 = 3814) appears on the ‘top’.
      Corresponding author: Jiang Cheng-Lu, juul@my.swjtu.edu.cn ; Liu Qi-Jun, qijunliu@home.swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272296), the Fundamental Research Funds for the Central Universities, China (Grant No. 2682019LK07), the fund of the State Key Laboratory of Solidification Processing in NWPU, China (Grant No. SKLSP201843), the Doctoral Innovation Fund Program of Southwest Jiaotong University and the Doctoral Students Top-notch Innovative Talent Cultivation of Southwest Jiaotong University, China (Grant No. D-CX201832), and 18th key laboratory open project of Southwest jiaotong university, China (ZD201918083)
    [1]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [2]

    Cundall P A, Strack O D L 1979 Géotechnique 29 47Google Scholar

    [3]

    赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819Google Scholar

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819Google Scholar

    [4]

    Cundall P A 1971 Proceedings of the Symposium of the International Society of Rock Mechanics 2 2

    [5]

    徐泳, 孙其诚, 张凌, 黄文彬 2003 力学进展 33 251Google Scholar

    Xu Y, Sun Q C, Zhang L, Huang W B 2003 Advances in Mechanics 33 251Google Scholar

    [6]

    Ahlinhan M F, Houehanou E, Koube M B, Doko V, Alaye Q, Sungura N E 2018 Adjovi Geomaterials 8 39Google Scholar

    [7]

    Cundall P A, Hart R D 1979 Numerical Methods in Geomechanics 1 289

    [8]

    Cundall P A, Hart R D 1992 International Journal for Computer-Aided Engineering and Software 9 101Google Scholar

    [9]

    Cundall P A 2001 Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 149 41

    [10]

    王泳嘉 1986第一届全国岩石力学数值计算及模型试验讨论会论文集 江西吉安 1986年6月20−27日 第3237页

    Wang Y J 1986 Proceedings of the First National Symposium on Numerical Computation and Model Testing of Rock Mechanics Ji’an, Jiangxi, June 20-27 1986 pp32−37 (in Chinese)

    [11]

    刘凯欣, 高凌天 2003 力学进展 33 483Google Scholar

    Liu K X, Gao L T 2003 Advances in Mechanics 33 483Google Scholar

    [12]

    Tang Z P, Horie Y, Psakhie S G 1997 High-Pressure Compression of Solids IV (New York: Springer) pp143−175

    [13]

    Tang Z P, Horie Y, Psakhie S G 1996 AIP Conference Proceedings 370 657Google Scholar

    [14]

    于继东, 王文强, 刘仓理, 赵峰, 孙承维 2008 爆炸与冲击 28 488Google Scholar

    Yu J D, Wang W Q, Liu C L, Zhao F, Sun C W 2008 Explosion and Shock Waves 28 488Google Scholar

    [15]

    刘超, 石艺娜, 秦承森, 梁仙红 2014 计算物理 31 51Google Scholar

    Liu C, Shi Y N, Qin C S, Liang X H 2014 Chinese Journal of Computational Physics 31 51Google Scholar

    [16]

    刘超, 石艺娜, 秦承森, 梁仙红 2014 兵工学报 35 1009Google Scholar

    Liu C, Shi Y N, Qin C S, Liang X H 2014 Acta Armamentarii 35 1009Google Scholar

    [17]

    孟凡净, 刘焜 2014 物理学报 63 262

    Meng F J, Liu K 2014 Acta Phys. Sin. 63 262

    [18]

    赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 187007

    Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 187007

    [19]

    程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld 2018 物理学报 67 0147028

    Cheng Q, Ran X W, Liu P, Tang W H, Raphael B 2018 Acta Phys. Sin. 67 0147028

    [20]

    Su Y, Fan J Y, Zheng Z Y, Zhao J J, Song H J 2019 Chin. Phys. B 27 056404

    [21]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [22]

    Tian Y, Wang H, Zhang C S, Tian Q, Zhang W B, Li H J, Li J, Liu B D, Sun G A, Peng T P, Xu Y, Gong J 2017 Chin. Phys. Lett. 34 066101Google Scholar

    [23]

    尚海林, 赵锋, 王文强, 傅华 2010 爆炸与冲击 30 131Google Scholar

    Shsng H L, Zhao F, Wang W Q, Fu H 2010 Explosion and Shock Waves 30 131Google Scholar

    [24]

    章冠人, 陈大年 1991 凝聚炸药起爆动力学 (北京: 国防工业出版社) 第89−128页

    Zhang G R, Chen D N 1991 Initiation Kinetics of Condensed Explosive (Beijing: National Defense Industry Press) pp89−128 (in Chinese)

    [25]

    尚海林 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Shang H L 2009 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [26]

    Campbell A W, Davis W C, Travis J R 1961 Phys. Fluids 4 498Google Scholar

    [27]

    Walker F E, Wasley R J 1970 Combust. Flame 3 233

    [28]

    傅华, 赵峰, 谭多望, 王文强, 尚海林 2011 高压物理学报 25 8Google Scholar

    Fu H, Zhao F, Tan D W, Wang W Q, Shang H L 2011 Chinese Journal of High Pressure Physics 25 8Google Scholar

    [29]

    葛妮娜, 姬广富, 陈向荣, 魏永凯 2013 爆炸与冲击 S1 34

    Ge N N, Ji G F, Chen X R, Wei Y K 2013 Explosion and Shock Waves S S1 34

    [30]

    Millett J C F, Taylor P, Roberts A, Appleby-Thomas G 2017 J. Dynamic Behavior Mater. 3 100Google Scholar

    [31]

    唐志平 2003 中国科学E辑: 技术科学 11 989

    Tang Z P 2003 Sci. China Technol. Sci. 11 989

    [32]

    尚海林 2018 博士学位论文 (绵阳: 中国工程物理研究院)

    Shang H L 2018 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese)

  • 图 1  单个HMX颗粒离散元模型

    Figure 1.  Discrete element model for a single HMX particle.

    图 2  多个HMX颗粒离散元模型

    Figure 2.  Discrete element model for HMX multi-particles.

    图 3  颗粒尺寸为100 μm的HMX颗粒受到撞击后的响应过程

    Figure 3.  The response of HMX particles with the size of 100 μm.

    图 5  颗粒尺寸为1000 μm的HMX颗粒炸药受到撞击后的响应过程

    Figure 5.  The response of HMX particles with the size of 1000 μm.

    图 4  颗粒尺寸为500 μm的HMX颗粒炸药受到撞击后的响应过程

    Figure 4.  The response of HMX particles with the size of 500 μm.

    图 6  下落高度为30 cm的HMX颗粒炸药受到撞击后的响应过程

    Figure 6.  The response of HMX particles with the falling height of 30 cm.

    图 7  下落高度为40 cm的HMX颗粒炸药受到撞击后的响应过程

    Figure 7.  The response of HMX particles with the falling height of 40 cm.

    图 8  颗粒数为19的HMX颗粒炸药受到撞击后的响应过程

    Figure 8.  The response of HMX particles with the particle number 19.

    图 9  不同颗粒数样品厚度与温度的关系

    Figure 9.  The relationship between temperature and thickness of particles.

    图 10  尖顶球型炸药颗粒冲击燃烧模型

    Figure 10.  The combustion model under impact of spherical explosive particles.

    图 11  平顶颗粒剪切加热效应

    Figure 11.  Shear heating effect of flat-topped particles.

    图 12  上表面局部点火及燃烧区扩展过程

    Figure 12.  Local ignition of surface and the process of expansion.

    图 13  含孔洞颗粒(离散元${{256}} \times {{34 = 8704}}$个)受撞击后的的点火特性

    Figure 13.  Ignition characteristics of porous particles (discrete elements ${{256}} \times {{34 = 8704}}$) under shock force.

    图 14  含孔洞颗粒(离散元${{93}} \times {{35 = 3814}}$个)受撞击后的的点火特性

    Figure 14.  Ignition characteristics of porous particles (discrete elements ${{93}} \times {{35 = 3814}}$) under shock force.

    表 1  HMX的计算参数

    Table 1.  The calculating parameters of HMX.

    密度/
    g·cm–3
    摩擦
    系数
    元的半径/
    μm
    元的能量${Q_r}$/
    MJ·kg–1
    比热$C_v^i$/
    J·g–1K
    1.830.35106.191.1
    DownLoad: CSV
  • [1]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [2]

    Cundall P A, Strack O D L 1979 Géotechnique 29 47Google Scholar

    [3]

    赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819Google Scholar

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819Google Scholar

    [4]

    Cundall P A 1971 Proceedings of the Symposium of the International Society of Rock Mechanics 2 2

    [5]

    徐泳, 孙其诚, 张凌, 黄文彬 2003 力学进展 33 251Google Scholar

    Xu Y, Sun Q C, Zhang L, Huang W B 2003 Advances in Mechanics 33 251Google Scholar

    [6]

    Ahlinhan M F, Houehanou E, Koube M B, Doko V, Alaye Q, Sungura N E 2018 Adjovi Geomaterials 8 39Google Scholar

    [7]

    Cundall P A, Hart R D 1979 Numerical Methods in Geomechanics 1 289

    [8]

    Cundall P A, Hart R D 1992 International Journal for Computer-Aided Engineering and Software 9 101Google Scholar

    [9]

    Cundall P A 2001 Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 149 41

    [10]

    王泳嘉 1986第一届全国岩石力学数值计算及模型试验讨论会论文集 江西吉安 1986年6月20−27日 第3237页

    Wang Y J 1986 Proceedings of the First National Symposium on Numerical Computation and Model Testing of Rock Mechanics Ji’an, Jiangxi, June 20-27 1986 pp32−37 (in Chinese)

    [11]

    刘凯欣, 高凌天 2003 力学进展 33 483Google Scholar

    Liu K X, Gao L T 2003 Advances in Mechanics 33 483Google Scholar

    [12]

    Tang Z P, Horie Y, Psakhie S G 1997 High-Pressure Compression of Solids IV (New York: Springer) pp143−175

    [13]

    Tang Z P, Horie Y, Psakhie S G 1996 AIP Conference Proceedings 370 657Google Scholar

    [14]

    于继东, 王文强, 刘仓理, 赵峰, 孙承维 2008 爆炸与冲击 28 488Google Scholar

    Yu J D, Wang W Q, Liu C L, Zhao F, Sun C W 2008 Explosion and Shock Waves 28 488Google Scholar

    [15]

    刘超, 石艺娜, 秦承森, 梁仙红 2014 计算物理 31 51Google Scholar

    Liu C, Shi Y N, Qin C S, Liang X H 2014 Chinese Journal of Computational Physics 31 51Google Scholar

    [16]

    刘超, 石艺娜, 秦承森, 梁仙红 2014 兵工学报 35 1009Google Scholar

    Liu C, Shi Y N, Qin C S, Liang X H 2014 Acta Armamentarii 35 1009Google Scholar

    [17]

    孟凡净, 刘焜 2014 物理学报 63 262

    Meng F J, Liu K 2014 Acta Phys. Sin. 63 262

    [18]

    赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 187007

    Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 187007

    [19]

    程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld 2018 物理学报 67 0147028

    Cheng Q, Ran X W, Liu P, Tang W H, Raphael B 2018 Acta Phys. Sin. 67 0147028

    [20]

    Su Y, Fan J Y, Zheng Z Y, Zhao J J, Song H J 2019 Chin. Phys. B 27 056404

    [21]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [22]

    Tian Y, Wang H, Zhang C S, Tian Q, Zhang W B, Li H J, Li J, Liu B D, Sun G A, Peng T P, Xu Y, Gong J 2017 Chin. Phys. Lett. 34 066101Google Scholar

    [23]

    尚海林, 赵锋, 王文强, 傅华 2010 爆炸与冲击 30 131Google Scholar

    Shsng H L, Zhao F, Wang W Q, Fu H 2010 Explosion and Shock Waves 30 131Google Scholar

    [24]

    章冠人, 陈大年 1991 凝聚炸药起爆动力学 (北京: 国防工业出版社) 第89−128页

    Zhang G R, Chen D N 1991 Initiation Kinetics of Condensed Explosive (Beijing: National Defense Industry Press) pp89−128 (in Chinese)

    [25]

    尚海林 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Shang H L 2009 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [26]

    Campbell A W, Davis W C, Travis J R 1961 Phys. Fluids 4 498Google Scholar

    [27]

    Walker F E, Wasley R J 1970 Combust. Flame 3 233

    [28]

    傅华, 赵峰, 谭多望, 王文强, 尚海林 2011 高压物理学报 25 8Google Scholar

    Fu H, Zhao F, Tan D W, Wang W Q, Shang H L 2011 Chinese Journal of High Pressure Physics 25 8Google Scholar

    [29]

    葛妮娜, 姬广富, 陈向荣, 魏永凯 2013 爆炸与冲击 S1 34

    Ge N N, Ji G F, Chen X R, Wei Y K 2013 Explosion and Shock Waves S S1 34

    [30]

    Millett J C F, Taylor P, Roberts A, Appleby-Thomas G 2017 J. Dynamic Behavior Mater. 3 100Google Scholar

    [31]

    唐志平 2003 中国科学E辑: 技术科学 11 989

    Tang Z P 2003 Sci. China Technol. Sci. 11 989

    [32]

    尚海林 2018 博士学位论文 (绵阳: 中国工程物理研究院)

    Shang H L 2018 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese)

  • [1] Ma Guang-Peng, Gong Zhen-Quan, Nie Meng-Jiao, Cao Hui-Qun, Qu Jun-Le, Lin Dan-Ying, Yu Bin. Multifocus double-helix point spread function microscopy for 3D single particle tracking. Acta Physica Sinica, 2024, 73(10): 108701. doi: 10.7498/aps.73.20240271
    [2] Tian Miao, Yao Ting-Yu, Cai Zhi-Min, Liu Fu-Cheng, He Ya-Feng. Three-Dimensional Numerical Simulation of Particle Separation Using a Dusty Plasma Ratchet. Acta Physica Sinica, 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [3] Li Chun-Yu, Hao Guang-Zhou, Liu Yue-Qiang, Wang Lian, Liu Yi-Hui-Zi. Influence of toroidal rotation on plasma response to external RMP fields in tokamak. Acta Physica Sinica, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [4] Ma Li-Dong, Yang Guang-Hui, Zhang Sheng, Lin Ping, Tian Yuan, Yang Lei. Numerical experiment studies of clogging during the discharge of granular matter in a three-dimensional hopper. Acta Physica Sinica, 2018, 67(4): 044501. doi: 10.7498/aps.67.20171813
    [5] Gao Han-Feng, Zhang Xin, Wu Fu-Gen, Yao Yuan-Wei. Semi-Dirac cone and singular features of two-dimensional three-component phononic crystals. Acta Physica Sinica, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [6] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [7] Luo Hai-Bin, Li Jun-Jie, Ma Yuan, Guo Chun-Wen, Wang Jin-Cheng. Phase field modeling of the evolution of partical interface shape distribution during coarsening. Acta Physica Sinica, 2014, 63(2): 026401. doi: 10.7498/aps.63.026401
    [8] Huang Xue-Feng, Li Sheng-Ji, Zhou Dong-Hui, Zhao Guan-Jun, Wang Guan-Qing, Xu Jiang-Rong. Trap, ignition, and diffusion combustion characteristics of active carbon micro-particles at a meso-scale studied by optical tweezers. Acta Physica Sinica, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [9] Yuan Qiang, Wei Xiao-Feng, Zhang Xiao-Min, Zhang Xin, Zhao Jun-Pu, Huang Wen-Hui, Hu Dong-Xia. Conceptual research on modifications of indirect drive laser facilities for shock ignition. Acta Physica Sinica, 2012, 61(11): 114206. doi: 10.7498/aps.61.114206
    [10] Su Rui, Long Yao, Jiang Sheng-Li, He Jie, Chen Jun. Elastic properties of β-HMX under extra pressure: a first principles study. Acta Physica Sinica, 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [11] Yan Guan-Yun, Tian Qiang, Huang Chao-Qiang, Gu Xiao-Min, Sun Guang-Ai, Chen Bo, Huang Ming, Nie Fu-De, Liu Yi, Li Xiu-Hong. A small-angle X-ray scattering study of micro-defects in thermally treated HMX. Acta Physica Sinica, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [12] Yuan Qiang, Hu Dong-Xia, Zhang Xin, Zhao Jun-Pu, Hu Si-De, Huang Wen-Hui, Wei Xiao-Feng. Study on the mechanism of shock ignition in laser fusion. Acta Physica Sinica, 2011, 60(1): 015202. doi: 10.7498/aps.60.015202
    [13] Hua Jin-Rong, Li Li, Xiang Xia, Zu Xiao-Tao. Three-dimensional numerical simulation of light field modulation in the vicinity of inclusions in silica subsurface. Acta Physica Sinica, 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [14] Yuan Qiang, Hu Dong-Xia, Zhang Xin, Zhao Jun-Pu, Hu Si-De, Huang Wen-Hui, Wei Xiao-Feng. Performance of shock ignition with varying ignitor. Acta Physica Sinica, 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [15] Yan Zheng-Xin. Compare study on the explosion characteristics of nano-aluminum and micro-aluminum. Acta Physica Sinica, 2011, 60(7): 076202. doi: 10.7498/aps.60.076202
    [16] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Xu Zhi-Peng. Numerical simulation on segregation process of particles using 3D discrete element method. Acta Physica Sinica, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [17] Zhao Yong-Zhi, Jiang Mao-Qiang, Xu Ping, Zheng Jin-Yang. Discrete element simulation of the microscopic mechanical structure in sandpile. Acta Physica Sinica, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [18] Yi Chen-Hong, Mu Qing-Sun, Miao Tian-De. The DEM simulation for two-dimension granular system with point defects. Acta Physica Sinica, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [19] Liu Rui, Li Yin-Chang, Hou Mei-Ying. Phase separation in a three-dimensional granular gas system. Acta Physica Sinica, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [20] ZHANG JIA-TAI, HE BIN, HE XIAN-TU, CHANG TIE-QIANG, XU LIN-BAO, N.E.ANDEREEV. STUDY ON THE MECHANISM OF THE FAST IGNITION IN LASER FUSION . Acta Physica Sinica, 2001, 50(5): 921-925. doi: 10.7498/aps.50.921
Metrics
  • Abstract views:  7589
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2019
  • Accepted Date:  11 September 2019
  • Available Online:  01 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回