-
Photonic interconnects have potentials to break increasingly severe energy efficiency and bandwidth density bottlenecks of electrical interconnect in scaled complementary metal oxide semiconductor (CMOS) integrated circuits, leading to the emergence of optoelectronic integrated circuits (OEICs) that utilize electronic and photonic devices together in a synergistic way to achieve better performance than those based on pure electronic device technology. By reviewing the progresses of Si-based light-emitting device, the schematic of MOS-like light source integrated with waveguides and the following photodetector is analyzed for its availability. It is believed that on-chip optical interconnects could be achieved by standard CMOS technology successfully with the speed as fast as the velocity of light, supplying propulsions for nest-generation OEICs.
-
Keywords:
- silicon optoelectronics /
- optical interconnect /
- optical source
[1] Zhang Z, Xu K, Yuan J, Wang Y, Ogudo A, Viana C, Polleux J, Yu Q, Snyman L, Wang Y, Hu R 2016 J. Optoelectron. Adv. Mater. 18 737
[2] Huang B, Zhang X, Wang W, Dong Z, Guan N, Zhang Z, Chen H 2011 Opt. Commun. 284 3924Google Scholar
[3] Heidrich H, Kaiser R, Albrecht P, Fidorra S, Hamacher M, Rehbein W 2001 Appl. Phys. B 73 581Google Scholar
[4] Soref R A, Bennett B R 1987 Inte. Soc. Opt. Photon. 704 32
[5] Xu K, Snyman L, Aharoni H 2017 Opt. Mater. 69 274Google Scholar
[6] Xu K, Ogudo K, Snyman L 2017 Adv. Mater.: Rapid Commun. 11 16
[7] Lee K K, Lim D R, Luan H C, Agarwal A, Foresi J, Kimerling L C 2000 Appl. Phys. Lett. 77 1617Google Scholar
[8] Vlasov Y, Green W M J, Xia F 2008 Nature Photon. 2 242Google Scholar
[9] Brimont A, Thomson D J, Gardes F Y, Fedeli J M, Reed G T, Martí J, Sanchis P 2012 Opt. Lett. 37 3504Google Scholar
[10] Jutzi M, Berroth M, Wohl G, Oehme M, Kasper E 2005 IEEE Photon. Technol. Lett. 17 1510Google Scholar
[11] Chen S, Li W, Wu J 2016 Nature Photon. 10 307Google Scholar
[12] Henderson-Sapir O, Jackson S D, Ottaway D J 2016 Opt. Lett. 41 1676Google Scholar
[13] Canham L T 1990 Appl. Phys. Lett. 57 1046Google Scholar
[14] Hirschman K D, Tsybeskov L, Duttagupta S P 1996 Nature 384 338Google Scholar
[15] Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo D F 2000 Nature 408 440Google Scholar
[16] Luan H C, Lim D R, Lee K K 1999 Appl. Phys. Lett. 75 2909Google Scholar
[17] Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316Google Scholar
[18] Liu Z, Hu W, Li C, Li Y, Xue C, Li C, Wang Q 2012 Opt. Express 20 22327Google Scholar
[19] Dutta S, Hueting R J E, Annema A, Qi L, Nanver L K, Schmitz J 2015 J. Appl. Phys. 118 114
[20] Snyman L, Du Plessis M, Aharoni H 2007 Jpn. J. Appl. Phys. 46 24Google Scholar
[21] Xu K, Ogudo A, Polleux J, Viana C, Ma Z, Li Z, Yu Q, Li G, Snyman L 2016 Leukos 12 203Google Scholar
[22] Xu K 2016 IEEE Sensors J. 16 61846
[23] Yamada S, Kitao M 1993 Jpn. J. Appl. Phys. 32 45
[24] Snyman L, Xu K, Polleux J, Ogudo A, Viana C 2015 IEEE J. Quantum Electron. 51 1
[25] Wang W, Huang B, Dong Z, Chen H 2011 Chin. Phys. B 20 018
[26] Xu K, Li G P 2012 IEEE Photon. J. 4 2159Google Scholar
[27] Kuindersma P I, Hoang T, Schmitz J 2008 IEEE International Conference on Group IV Photonics Sorrento, Italy 5th, 2008 p256
[28] Xu K 2014 IEEE Trans. Electron Dev. 61 2085Google Scholar
[29] Marris D, Cassan E, Vivien L 2004 J. Appl. Phys. 96 6109Google Scholar
-
-
[1] Zhang Z, Xu K, Yuan J, Wang Y, Ogudo A, Viana C, Polleux J, Yu Q, Snyman L, Wang Y, Hu R 2016 J. Optoelectron. Adv. Mater. 18 737
[2] Huang B, Zhang X, Wang W, Dong Z, Guan N, Zhang Z, Chen H 2011 Opt. Commun. 284 3924Google Scholar
[3] Heidrich H, Kaiser R, Albrecht P, Fidorra S, Hamacher M, Rehbein W 2001 Appl. Phys. B 73 581Google Scholar
[4] Soref R A, Bennett B R 1987 Inte. Soc. Opt. Photon. 704 32
[5] Xu K, Snyman L, Aharoni H 2017 Opt. Mater. 69 274Google Scholar
[6] Xu K, Ogudo K, Snyman L 2017 Adv. Mater.: Rapid Commun. 11 16
[7] Lee K K, Lim D R, Luan H C, Agarwal A, Foresi J, Kimerling L C 2000 Appl. Phys. Lett. 77 1617Google Scholar
[8] Vlasov Y, Green W M J, Xia F 2008 Nature Photon. 2 242Google Scholar
[9] Brimont A, Thomson D J, Gardes F Y, Fedeli J M, Reed G T, Martí J, Sanchis P 2012 Opt. Lett. 37 3504Google Scholar
[10] Jutzi M, Berroth M, Wohl G, Oehme M, Kasper E 2005 IEEE Photon. Technol. Lett. 17 1510Google Scholar
[11] Chen S, Li W, Wu J 2016 Nature Photon. 10 307Google Scholar
[12] Henderson-Sapir O, Jackson S D, Ottaway D J 2016 Opt. Lett. 41 1676Google Scholar
[13] Canham L T 1990 Appl. Phys. Lett. 57 1046Google Scholar
[14] Hirschman K D, Tsybeskov L, Duttagupta S P 1996 Nature 384 338Google Scholar
[15] Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo D F 2000 Nature 408 440Google Scholar
[16] Luan H C, Lim D R, Lee K K 1999 Appl. Phys. Lett. 75 2909Google Scholar
[17] Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316Google Scholar
[18] Liu Z, Hu W, Li C, Li Y, Xue C, Li C, Wang Q 2012 Opt. Express 20 22327Google Scholar
[19] Dutta S, Hueting R J E, Annema A, Qi L, Nanver L K, Schmitz J 2015 J. Appl. Phys. 118 114
[20] Snyman L, Du Plessis M, Aharoni H 2007 Jpn. J. Appl. Phys. 46 24Google Scholar
[21] Xu K, Ogudo A, Polleux J, Viana C, Ma Z, Li Z, Yu Q, Li G, Snyman L 2016 Leukos 12 203Google Scholar
[22] Xu K 2016 IEEE Sensors J. 16 61846
[23] Yamada S, Kitao M 1993 Jpn. J. Appl. Phys. 32 45
[24] Snyman L, Xu K, Polleux J, Ogudo A, Viana C 2015 IEEE J. Quantum Electron. 51 1
[25] Wang W, Huang B, Dong Z, Chen H 2011 Chin. Phys. B 20 018
[26] Xu K, Li G P 2012 IEEE Photon. J. 4 2159Google Scholar
[27] Kuindersma P I, Hoang T, Schmitz J 2008 IEEE International Conference on Group IV Photonics Sorrento, Italy 5th, 2008 p256
[28] Xu K 2014 IEEE Trans. Electron Dev. 61 2085Google Scholar
[29] Marris D, Cassan E, Vivien L 2004 J. Appl. Phys. 96 6109Google Scholar
Catalog
Metrics
- Abstract views: 12413
- PDF Downloads: 187
- Cited By: 0