Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation and internal nucleosynthesis in massive rotating Wolf-Rayet stars

Peng Wei-Guo Song Han-Feng Zhan Qiong Wu Xing-Hua Jing Jiang-Hong

Citation:

Formation and internal nucleosynthesis in massive rotating Wolf-Rayet stars

Peng Wei-Guo, Song Han-Feng, Zhan Qiong, Wu Xing-Hua, Jing Jiang-Hong
PDF
HTML
Get Citation
  • Wolf-Rayet stars (WR stars) were discovered by French astronomers Charles Wolf and Georges Rayet in 1867. The Wolf-Rayet (WR) stars are the evolved descents of the most massive, extremely hot (temperatures up to 200000 K) and very luminous (105$ L_{\odot} $-106$L_{\odot}$) O stars, with 25$ M_{\odot} $-30$M_{\odot}$ solar mass for solar metallicity. The WR stars possess very strong stellar winds, which have velocities up to 3000 km/s and wind mass loss rate $10^{-5} M_{\odot}$ a year. These winds are observed in the broad emission line profiles (sometimes, even P-Cygni profiles) of WR spectra in the optical and UV range. Actually, these winds are so strong that they can peel the star and convert it into a nude nucleus without envelope. It has been found that three bright galactic stars located at Cygnus region have broad strong emission bands, rather than absorptions lines, superposed on the typical continuum of hot stars. In 1930 Beals correctly identified these features as emission lines produced by high ionized elements such as helium, carbon, nitrogen and oxygen. The physical factors which can affect the evolution of WR stars are explored in this paper. These physical factors include stellar mass, initial velocities, orbital periods, metallicities, etc. According to the equations for angular momentum transfer and chemical element diffusion, we can ascertainhow these physical factors influence the evolution of WR stars and the mixing of chemical elements in WR stars.The result indicates that massive stars with high initial velocities and metallicities have strong stellar winds and be prone to producing WR stars. In contrast with the counterpart with high metallicities,it is hard for the single star with low metallicity to generate WR star due to weak wind. However, the star with very high initial velocity and low metallicity can form chemical homogenious evolution. Thestar has an enlarged convective core and a very thin hydrogen envelope and it can also generate WR star. The component in the binary system with short orbital period can transfer mass to the companion star through Roche lobe overflow, and this physical process can produce WR star under the condition of low metallicity. Furthermore, mass removal due to Roche lobe overflow reduces the temperature of stellar convective core and rate of nuclear reaction. It is shown that mass metallicities of chemical elements including 4He, 12C, 19F, 22Ne, 23Na, 25Mg in the primary star are higher than those in the single stars, whereas mass metallicities of chemical elements including 1H, 14N, 16O, 20Ne, and 26Al are lower than those in the single counterparts. In a word, the conditions for massive stars with high initial velocities and metallicities in the binary system with short orbital period favor the formation of WR stars.
      Corresponding author: Song Han-Feng, hfsong@gzu.edu.cn ; Zhan Qiong, zhanqiong1108@163.com
    • Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11463002, 11863003), the Project for Science and Technology Plan in Guizhou Province, China (Grant No. [2018]5781), and the Open Foundation of the Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Science (Grant No. OP201405)
    [1]

    Wolf C J E, Rayet G 1867 Academie des Sciences Paris Comptes Rendus 65 292

    [2]

    Georgy C, Ekstrom S, Meynet G, Massey P, Levesque E M, Hirschi R, Eggenberger P, Maeder A 2012 Astron. Astrophys. 542 A29Google Scholar

    [3]

    Groh J H, Meynet G, Georgy C, Ekstrom S 2013 Astron. Astrophys. 558 A131Google Scholar

    [4]

    Eldridge J J, Fraser M, Smartt S J, Maund J R, Crockett R M 2013 Mon. Not. R. Astron. Soc. 436 774Google Scholar

    [5]

    Vuissoz C, Meynet G, Kndlseder J, Cervino M, Schearer D, Palacios A, Mowlavi N 2004 New Astron. Rev. 48 7Google Scholar

    [6]

    黄润乾 2006 恒星物理 (第2版) (北京: 中国科学技术出版社) 第378−384页

    Huang R Q 2006 Stellar Physics (2nd Ed.) (Beijing: Science and Technology of China Press) pp378−384 (in Chinese)

    [7]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183Google Scholar

    [8]

    Huang R Q 2004 Astron. Astrophys. 422 981Google Scholar

    [9]

    Huang R Q 2004 Astron. Astrophys. 425 591Google Scholar

    [10]

    Kippenhahn R, Thomas H C 1969 Mitt. A. G. 27 168

    [11]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184Google Scholar

    [12]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarque P 1989 Astrophys. J. 338 424Google Scholar

    [13]

    Pinsonneault M H, Kawaler S D, Demarque P 1990 Astrophys. J. Suppl. Ser. 74 501Google Scholar

    [14]

    Pinsonneault M H, Deliyannis C P, Demarque P 1991 Astrophys. J. 367 239Google Scholar

    [15]

    宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701Google Scholar

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701Google Scholar

    [16]

    Song H F, Wang J Z, Song F, Song F, Wang J T 2017 Astron. Astrophys. 600 A42Google Scholar

    [17]

    詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701Google Scholar

    Zhan Q, Song H F, Tai L T, Wang J T 2015 Acta Phys. Sin. 64 089701Google Scholar

    [18]

    邰丽婷, 宋汉峰, 王江涛 2016 物理学报 65 049701Google Scholar

    Tai L T, Song H F, Wang J T 2016 Acta Phys. Sin. 65 049701Google Scholar

    [19]

    Zahn J P 1975 Astron. Astrophys. 41 329

    [20]

    Zahn J P 1977 Astron. Astrophys. 57 383

    [21]

    Maeder A, Meynet G 2000 Annu. Rev. Astron. Astrophys. 38 143Google Scholar

    [22]

    de Mink S E, Cantiello M, Langer N, Pols O R, Brott I, Yoon S C 2009 Astron. Astrophys. 497 243Google Scholar

    [23]

    Song H F, Meynet G, Maeder A, Ekstrom S, Eggenberger P 2016 Astron. Astrophys. 585 A120Google Scholar

    [24]

    Maeder A 1987 Astron. Astrophys. 178 159

    [25]

    Wang J T, Song H F 2016 Chin. Phys. Lett. 33 099702Google Scholar

    [26]

    Li Z, Song H F, Peng W G 2018 Chin. Phys. Lett. 35 079701Google Scholar

    [27]

    Meynet G, Maeder A 1997 Astron. Astrophys. 321 465

    [28]

    Endal A S, Sofia S 1978 Astrophys. J. 220 279Google Scholar

    [29]

    Kippenhahn R 1974 Late Stages of Stellar Evolution (Warsaw: D Reidel Publishing Co) p20

    [30]

    Heger A, Langer N, Woosley S E 2000 Astrophys. J. 528 368Google Scholar

    [31]

    Vink J S, de Koter A, Lamers H J G L M 2000 Astron. Astrophys. 362 295

    [32]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574Google Scholar

    [33]

    Nugis T, Lamers H J G L M 2000 Astron. Astrophys. 360 227

    [34]

    Eldridge J J, Vink J S 2006 Astron. Astrophys. 452 295Google Scholar

    [35]

    Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F 2011 Astrophys. J. Suppl. 192 3PGoogle Scholar

    [36]

    Paxton B, Cantiello M, Arras P, Bildsten L, Brown E F, Dotter A, Mankovich C, Montgomery M H, Stello D, Timmes F X, Townsend R 2013 Astrophys. J. Suppl. 208 4PGoogle Scholar

    [37]

    Paxton B, Marchant P, Schwab J, Bauer E B, Bildsten L, Cantiello M, Dessart L, Farmer R, Hu H, Langer N, Townsend R H D, Townsley D M, Timmes F X 2015 Astrophys. J. Suppl. 220 15PGoogle Scholar

    [38]

    Meynet G, Maeder A 2002 Astron. Astrophys. 381 25Google Scholar

  • 图 1  (a)单星模型赤道转动速度随时间的变化; (b)双星模型赤道转动速度随时间的变化; 其中, 空心菱形为主序结束, 空心圆圈为中心氦开始燃烧, 实心圆圈为中心氦燃烧结束, 空心正方形为中心碳开始燃烧, 实心正方形是中心碳燃烧结束

    Figure 1.  (a) Variations of equatorial velocity in single star models; (b) variations of equatorial velocity in binary star models. Hollow diamonds denote the end of main sequence; hollow circles stand for the beginning of helium burning; solid circles denote the end of helium burning; hollow squares represent the beginning of carbon burning; solid squares represent the end of carbon burning

    图 2  (a) 各种单星模型的质量(实线)和其对应的对流核的质量(划线)随时间的变化; (b) 各种双星模型的质量(实线)和其对应的对流核的质量(划线)随时间的变化

    Figure 2.  (a) Stellar mass and its mass of convective core vary with evolutionary time for the models of single star; (b) stellar mass and its mass of convective core vary with evolutionary time for the models of binary star

    图 3  (a)单星模型中恒星表面氮丰度随时间的演化; (b)双星模型中两子星表面氮丰度随时间的演化; (c) 主序阶段, 单星和双星模型的表面氦质量丰度随中心氦质量丰度的变化

    Figure 3.  (a) Surface nitrogen abundance vary with evolutionary time for the models of single star; (b) surface nitrogen abundance vary with evolutionary time for the models of binary star; (c) surface helium abundance vary with central helium for the models of single stars and binary star

    图 4  (a) 单星非转动S1模型表面各种元素的质量丰度的对数值随时间的演化; (b) 单星转动S6模型表面各种元素的质量丰度的对数值随时间的演化; (c) 双星非转动B1模型中的主星表面各种元素的质量丰度的对数值随时间的演化; (d) 双星转动模型B2中的主星表面各种元素的质量丰度的对数值随时间的演化

    Figure 4.  (a) Evolution as a function of the actual mass of the abundances (in mass fraction) of different elements at the surface of a non-rotating single model S1; (b) evolution as a function of the actual mass of the abundances (in mass fraction) of different elements at the surface of a rotating single model S6; (c) evolution as a function of the actual mass of the abundances (in mass fraction) of different elements at the surface of the primary star of model B1; (d) evolution as a function of the actual mass of the abundances (in mass fraction) of different elements at the surface of the primary star of model B2

    图 5  双星模型洛希瓣物质交换率随时间的演化

    Figure 5.  Rate of mass transfer during Roche lobe overflow vary with evolutionary time for the models of binary star

    图 6  (a) 单星模型在赫罗图中演化; (b) 双星模型中的主星在赫罗图中的演化; 双星模型的初始偏心率为0

    Figure 6.  (a) Evolutionary tracks in HR diagram for single stars; (b) evolutionary tracks in HR diagram for binaries

    图 7  (a) 单星模型表面氢的质量丰度随中心氦质量丰度的变化; (b) 单星模型表面有效温度随中心氦质量丰度的变化; (c) 双星模型表面氢的质量丰度随中心氦质量丰度的变化; (d) 双星模型表面有效温度随中心氦质量丰度的变化

    Figure 7.  (a) Surface mass fraction of hydrogen varies with central helium mass fraction in models of single star; (b) surface effective temperature varies with central helium mass fraction in models of single star; (c) surface mass fraction of hydrogen varies with central helium mass fraction in models of binary star; (d) surface effective temperature varies with central helium mass fraction in models of of binary star

    表 1  WR星分类的判定依据

    Table 1.  Criteria for classification of WR stars

    0.45 WR星的类型 判定依据
    O型星 $\log (T_{\rm eff})>4.5$
    WNL型星 $\log (T_{\rm eff})>4.0$ 和 $X_{\rm H} <0.3$
    WNE型星 $X_{\rm H} <10^{-5}$ 和 $X_{\rm C}<X_{\rm N}$
    WNC型星 $\dfrac{X_{\rm C}}{X_{\rm N}}>0.1$ 和 $\dfrac{X_{\rm C}}{X_{\rm N}}<10$
    WC型星 $X_{\rm C}>X_{\rm N}$ 和 $\rm \dfrac{C+O}{He}<1$
    WO型星 $X_{\rm C}>X_{\rm N}$ 和 $\rm \dfrac{C+O}{He}>1$
    注: $T_{\rm eff}$是恒星的有效温度; ${X_{i} }/{X_{j} }$为恒星元素的质量丰度之比; $\rm ({C+O})/{He}$为数丰度之比.
    DownLoad: CSV

    表 2  单星和双星理论模型的初始参数

    Table 2.  Initial parameters for single stars and binaries

    Models $M_1/M_\odot$ $M_2/M_\odot$ $Z$ $\alpha$ $P_{\rm orb, ini}$/d $V_{\rm ini, 1}$/km·s–1 $V_{\rm ini, 2}$/km·s–1
    S1 60 0.014 0.0385 0
    S2 60 0.014 0.0385 300
    S3 60 0.014 0.0385 600
    S4 40 0.014 0.0385 300
    S5 60 0.0021 0.0385 300
    S6 60 0.0021 0.0385 600
    B1 60 40 0.014 0.0385 3.0 0 0
    B2 60 40 0.014 0.0385 3.0 300 300
    B3 60 40 0.014 0.0385 3.0 600 600
    B4 60 40 0.014 0.0385 40.0 300 300
    B5 60 40 0.0021 0.0385 3.0 300 300
    注: B为双星系统, S为单星; $M_1$, $M_2$分别为主星和次星的质量(以太阳质量$M_{\odot}$为单位); Z为金属丰度; $\alpha$为对流超射系数;
    $P_{\rm orb, ini}$为双星初始轨道周期; $V_{\rm ini, 1}$, $V_{\rm ini, 2}$分别为主星和次星的初始自转赤道速度.
    DownLoad: CSV

    表 3  单星模型在各个演化阶段的参数

    Table 3.  Parameters for single star at different evolutionary stages

    Sequence Age/Myr $M/M_{\odot}$ $\log T_{\rm eff}$ $\log ({L_{1}}/{L_{\odot}})$ $\rm [N/H]$ $V_{\rm eq}$/km·s–1 $\log T_{\rm c}$ $\log \rho_{\rm c}$
    ZAMS
    S1 0.0000 60.00 4.68 5.72 7.84 0.00 7.60 0.31
    S2 0.0000 60.00 4.66 5.70 7.84 300.00 7.59 0.29
    S3 0.0000 60.00 4.63 5.64 7.84 600.00 7.58 0.26
    S4 0.0000 40.00 4.62 5.34 7.84 300.00 7.57 0.40
    S5 0.0000 60.00 4.67 5.74 6.99 300.00 7.57 0.24
    S6 0.0000 60.00 4.65 5.70 6.99 600.00 7.56 0.21
    TAMS
    S1 3.9511 42.02 4.42 5.98 9.01 0.00 7.81 0.91
    S2 4.1537 44.42 4.46 6.00 8.96 18.07 7.81 0.90
    S3 4.5124 37.75 4.69 5.98 9.29 18.66 7.81 0.92
    S4 5.3408 31.87 4.22 5.70 8.63 1.42 7.79 1.00
    S5 4.3346 54.56 4.29 6.05 7.96 7.21 7.87 1.05
    S6 5.0531 34.52 4.88 5.99 8.96 25.65 7.86 1.10
    BCHEB
    S1 3.9550 42.01 4.46 6.00 9.01 0.00 7.98 1.43
    S2 4.1574 44.40 4.51 6.02 8.98 19.75 7.98 1.42
    S3 4.5162 37.62 4.77 6.01 9.30 25.72 7.98 1.45
    S4 5.3453 31.83 4.25 5.72 8.63 1.37 7.96 1.51
    S5 4.3383 54.53 4.31 6.06 7.96 7.28 8.03 1.55
    S6 5.0570 34.44 4.96 6.02 8.97 36.78 8.03 1.60
    ECHEB
    S1 4.3054 25.27 5.21 5.99 23.45 0.00 8.53 3.13
    S2 4.5120 25.94 5.21 6.00 23.02 158.64 8.53 3.13
    S3 4.8924 16.90 5.20 5.74 24.64 76.49 8.51 3.22
    S4 5.7771 15.57 5.35 5.79 25.17 327.58 8.88 4.59
    S5 4.6825 39.56 4.45 6.19 8.45 5.98 8.54 3.07
    S6 5.4231 18.20 5.21 5.79 28.82 49.92 8.52 3.21
    BCCB
    S1 4.3099 25.16 5.33 6.06 16.72 0.00 8.83 4.14
    S2 4.5167 25.81 5.34 6.07 19.18 286.44 8.85 4.24
    S3 4.8980 16.80 5.34 5.83 20.60 149.13 8.86 4.45
    S4 5.7772 15.57 5.36 5.79 25.28 334.92 8.92 4.78
    S5 4.6870 39.45 4.46 6.25 8.57 37.32 8.84 4.12
    S6 5.4284 18.10 5.34 5.87 20.66 94.78 8.85 4.35
    ECCB
    S1 4.3100 25.15 5.42 6.09 18.59 0.00 9.07 5.25
    S2 4.5167 25.81 5.42 6.10 18.47 313.57 9.06 5.19
    S3 4.8981 16.80 5.41 5.86 20.55 157.94 9.06 5.40
    S4 5.7772 15.57 5.40 5.81 25.43 367.73 9.03 5.33
    S5
    S6 5.4285 18.10 5.41 5.90 20.90 97.57 9.05 5.34
    注: ZAMS为零龄主序; TAMS表示主序结束; BCHEB为中心氦核开始燃烧; ECHEB为中心氦核结束燃烧; BCCB 为中心碳核开始燃烧; CCB为中心碳核结束燃烧.
    DownLoad: CSV

    表 4  双星模型在各个主要演化阶段的参数

    Table 4.  Evolutionary parameters for binary star at different stages.

    Sequence Age
    /Myr
    $P_{\rm orb}$
    /d
    $M_{1}/M_{\odot}$ $M_{2}/M_{\odot}$ $\log(T_{\rm eff, 1})$
    /K
    $\log \Big(\dfrac{L_{1}}{L_{\odot} }\Big)$ $\log(T_{\rm eff, 2})$
    /K
    $\log \Big(\dfrac{L_{2}}{L_{\odot} }\Big)$ $\Big[\rm \dfrac{N_{1}}{H}\Big]$ $\Big[\rm \dfrac{N_{2}}{H}\Big]$ $V_{\rm eq1}$/
    km·s–1
    $V_{\rm eq2}$/
    km·s–1
    $\log T_{\rm c}$/
    K
    $\log \rho_{\rm c}$/
    g·cm–3
    ZAMS
    B1 0.0000 3.00 60.00 40.00 4.68 5.71 4.64 5.36 7.84 7.84 0.00 0.00 7.62 0.37
    B2 0.0000 3.00 60.00 40.00 4.67 5.70 4.63 5.34 7.84 7.84 288.35 294.86 7.61 0.35
    B3 0.0000 3.00 60.00 40.00 4.64 5.65 4.59 5.27 7.84 7.84 566.93 581.75 7.60 0.32
    B4 0.0000 40.00 60.00 40.00 4.67 5.70 4.63 5.34 7.84 7.84 288.35 294.86 7.61 0.35
    B5 0.0000 3.00 60.00 40.00 4.69 5.66 4.65 5.29 6.99 6.99 306.83 301.14 7.66 0.50
    BTM1
    B1 2.6862 3.60 53.01 38.15 4.59 5.84 4.59 5.48 7.84 7.84 0.00 0.00 7.64 0.39
    B2 2.6314 3.63 51.90 38.00 4.59 5.82 4.59 5.47 8.25 7.94 250.24 162.73 7.63 0.39
    B3 2.7810 4.12 51.34 37.86 4.57 5.83 4.59 5.48 8.22 7.96 238.80 146.79 7.64 0.40
    B4 4.1328 63.17 43.82 35.94 4.23 6.02 4.49 5.56 9.05 8.69 35.18 120.39 8.24 2.26
    B5 2.9131 3.25 57.69 39.46 4.60 5.86 4.61 5.47 7.34 7.07 270.95 164.95 7.68 0.52
    ETM1
    B1 3.8956 4.25 36.84 43.77 4.62 5.90 4.57 5.67 9.20 8.18 0.00 0.00 7.70 0.61
    B2 2.7305 3.41 45.44 43.82 4.60 5.78 4.61 5.57 8.66 8.26 239.26 177.55 7.63 0.42
    B3 2.9777 3.92 44.57 43.27 4.59 5.81 4.60 5.58 8.83 8.25 226.58 161.96 7.64 0.44
    B4 4.1426 65.47 36.94 36.00 4.27 6.10 4.49 5.56 9.26 8.67 73.07 330.19 8.31 2.47
    B5 3.9817 3.61 38.02 51.22 4.63 5.87 4.65 5.73 8.27 7.82 217.02 168.84 7.72 0.69
    TAMS
    B1 4.0397 4.65 33.60 43.48 4.68 5.91 4.56 5.68 9.30 8.18 0.00 0.00 7.81 0.95
    B2 4.1254 5.13 25.57 43.47 4.83 5.79 4.53 5.69 9.86 8.41 20.52 193.13 7.80 0.99
    B3 4.0832 5.43 27.93 43.40 4.81 5.84 4.54 5.68 9.66 8.44 19.99 174.17 7.80 0.97
    B4 4.0693 62.61 44.06 36.03 4.41 5.97 4.54 5.56 8.82 8.63 6.63 68.60 7.72 0.65
    B5 4.3382 3.81 34.79 50.91 4.68 5.92 4.63 5.75 8.44 7.81 169.76 181.54 7.86 1.10
    BCHEB
    B1 4.0409 4.65 33.57 43.48 4.69 5.91 4.56 5.68 9.30 8.18 0.00 0.00 7.82 0.99
    B2 4.1297 5.15 25.44 43.46 4.92 5.82 4.53 5.69 9.87 8.41 30.07 192.49 7.97 1.52
    B3 4.0874 5.45 27.80 43.39 4.90 5.87 4.54 5.68 9.68 8.44 29.48 173.40 7.98 1.50
    B4 4.1281 63.03 43.88 35.95 4.48 5.99 4.53 5.56 9.04 8.63 4.75 60.68 7.91 1.21
    B5 4.3422 3.82 34.74 50.91 4.75 5.94 4.63 5.76 8.44 7.81 149.04 181.17 8.02 1.60
    BMT2
    B1 4.0474 4.67 33.39 43.47 4.63 6.00 4.58 5.69 9.30 9.30 0.00 0.00 8.24 2.29
    B2 3.1581 3.55 43.04 43.10 4.61 5.81 4.59 5.59 8.99 8.19 231.13 191.20 7.64 0.45
    B3 3.1290 3.97 43.65 43.04 4.59 5.82 4.59 5.58 8.93 8.23 223.55 166.73 7.64 0.45
    B4
    B5 4.3460 3.84 34.70 50.90 4.66 5.99 4.63 5.76 8.44 7.81 187.54 180.93 8.26 2.34
    EMT2
    B1 4.0562 5.13 30.44 45.39 4.65 6.06 4.62 5.72 9.48 8.74 0.00 0.00 8.31 2.49
    B2 3.5409 3.78 37.67 44.95 4.61 5.82 4.59 5.65 9.06 8.42 212.81 195.54 7.66 0.51
    B3 3.6151 4.27 37.66 44.50 4.60 5.84 4.58 5.65 9.07 8.44 203.84 175.46 7.66 0.52
    B4
    B5 4.3517 4.25 31.33 51.54 4.67 6.05 4.64 5.77 8.60 7.91 174.27 292.23 8.31 2.49
    ECHEB
    B1 4.4454 8.50 14.60 44.32 5.30 5.71 4.57 5.75 25.43 8.65 0.00 0.00 8.74 3.96
    B2 4.5716 8.31 11.27 42.40 5.27 5.52 4.45 5.73 24.26 8.41 58.94 181.80 8.70 3.93
    B3 4.5155 9.20 12.05 42.46 5.27 5.56 4.47 5.71 24.15 8.44 52.74 142.55 8.68 3.83
    B4 4.3645 94.44 25.01 35.66 5.14 5.92 4.50 5.58 24.02 8.65 0.32 127.17 8.37 2.68
    B5 4.6953 5.16 24.36 51.19 5.18 5.95 4.61 5.80 27.78 7.85 6.01 149.71 8.48 2.99
    BCCB
    B1 4.4468 8.51 14.58 44.31 5.35 5.75 4.57 5.75 24.91 8.65 0.00 0.00 8.89 4.66
    B2 4.5741 8.32 11.24 42.40 5.33 5.58 4.45 5.73 23.39 8.41 67.64 179.57 8.85 4.60
    B3 4.5184 9.22 12.02 42.45 5.34 5.62 4.47 5.71 24.42 8.44 62.74 140.22 8.88 4.71
    B4 4.4963 110.76 20.53 35.48 5.36 5.95 4.48 5.59 24.89 8.65 0.56 99.94 8.90 4.56
    B5 4.7078 5.25 23.75 51.18 5.37 6.03 4.61 5.80 23.51 7.85 10.68 146.97 8.92 4.63
    ECCB
    B1 4.4469 8.51 14.58 44.31 5.41 5.77 4.57 5.75 24.88 8.65 0.00 0.00 9.04 5.38
    B2 4.5743 8.32 11.24 42.40 5.37 5.60 4.45 5.73 22.95 8.41 66.77 173.97 9.01 5.44
    B3 4.5185 9.22 12.01 42.45 5.38 5.64 4.47 5.71 24.41 8.44 63.39 136.75 9.01 5.41
    B4 4.4963 110.77 20.53 35.48 5.42 5.97 4.48 5.59 24.88 8.65 0.67 98.21 9.05 5.22
    B5 4.7078 5.25 23.75 51.18 5.42 6.04 4.61 5.80 23.50 7.85 12.57 144.92 9.05 5.18
    DownLoad: CSV

    表 5  单星模型S1, S2和S6在各个主要阶段恒星表面的各种元素的质量丰度

    Table 5.  Mass fraction of various chemical elements at stellar surfaces at different stages in models S1, S2, and S6

    Sequence Age/Myr $M_1/M_{\odot}$ log($X_{\rm ^{1}H}$) log($X_{\rm ^{4}He}$) log($X_{\rm ^{12}C}$) log($X_{\rm ^{14}N}$) log($X_{\rm ^{16}O}$) log($X_{\rm ^{19}F}$) log($X_{\rm ^{20}Ne}$) log($X_{\rm ^{22}Ne}$) $X_{\rm ^{26}Al}$
    ZAMS
    S1 0.0000 60.00 –0.14 –0.58 –2.62 –3.15 –2.18 –6.46 –2.87 –3.96 0
    S2 0.0000 60.00 –0.14 –0.58 –2.62 –3.15 –2.18 –6.46 –2.87 –3.96 0
    S6 0.0000 60.00 –0.12 –0.63 –3.45 –3.98 –3.01 –7.28 –3.69 –4.78 0
    TAMS
    S1 3.9511 42.02 –0.23 –0.40 –3.91 –2.08 –3.07 –9.23 –2.87 –6.77 9.77 × 10–6
    S2 4.1537 44.42 –0.22 –0.42 –3.70 –2.11 –2.86 –7.86 –2.87 –5.37 4.57 × 10–6
    S6 5.0531 34.52 –0.99 –0.05 –4.56 –2.88 –4.60 –10.46 –3.83 –7.51 4.36 × 10–6
    BCHEB
    S1 3.9550 42.01 –0.23 –0.40 –3.91 –2.08 –3.07 –9.23 –2.87 –6.77 9.77 × 10–6
    S2 4.1574 44.40 –0.22 –0.41 –3.77 –2.10 –2.91 –8.07 –2.87 –5.58 4.89 × 10–6
    S6 5.0570 34.44 –0.99 –0.05 –4.56 –2.88 –4.60 –10.46 –3.83 –7.51 4.36 × 10–6
    WNL
    S1 4.1147 34.94 –0.58 –0.14 –3.87 –2.06 –3.63 –9.72 –2.88 –6.53 4.16 × 10–5
    S2 4.3343 36.29 –0.57 –0.14 –3.82 –2.06 –3.59 –9.67 –2.88 –6.45 3.54 × 10–5
    S6 4.1796 48.34 –0.52 –0.16 –4.60 –2.88 –4.55 –10.50 –3.79 –7.50 4.46 × 10–6
    WNE
    S1 4.1801 31.26 –5.02 –0.01 –3.73 –2.05 –3.77 –9.61 –2.89 –6.56 5.62 × 10–5
    S2
    S6
    WC
    S1 4.2217 28.36 –21.87 –0.51 –0.34 –17.12 –0.68 –4.71 –2.80 –1.88 1.12 × 10–15
    S2 4.4173 30.79 –5.22 –0.02 –1.50 –2.06 –2.05 –5.72 –2.89 –2.91 4.67 × 10–5
    S6 5.2107 29.81 –5.80 –0.02 –1.37 –2.89 –2.52 –6.15 –3.84 –3.38 3.80 × 10–6
    WO
    S1 4.2569 26.70 –21.35 –0.65 –0.34 –16.95 –0.52 –4.72 –2.70 –1.89 2.57 × 10–15
    S2 4.4302 28.58 –17.68 –0.71 –0.36 –5.17 –0.45 –4.72 –2.63 –1.91 4.16 × 10–8
    S6 5.3898 18.84 –29.68 –0.64 –0.32 –17.99 –0.55 –5.48 –3.51 –2.71 8.51 × 10–17
    ECHEB
    S1 4.3054 25.27 –29.41 –0.77 –0.37 –16.81 –0.41 –4.72 –2.59 –1.91 5.01 × 10–15
    S2 4.5120 25.94 –28.78 –0.82 –0.39 –16.61 –0.38 –4.72 –2.54 –1.93 7.07 × 10–15
    S6 5.4231 18.20 –35.90 –0.71 –0.33 –17.93 –0.48 –5.48 –3.43 –2.72 1.14 × 10–16
    BCCB
    S1 4.3099 25.16 –22.67 –0.79 –0.37 –16.80 –0.40 –4.73 –2.58 –1.92 5.37 × 10–15
    S2 4.5167 25.81 –24.97 –0.83 –0.40 –16.64 –0.37 –4.72 –2.52 –1.93 7.58 × 10–15
    S6 5.4284 18.10 –27.74 –0.72 –0.33 –17.93 –0.47 –5.48 –3.41 –2.72 1.54 × 10–16
    ECCB
    S1 4.3100 25.15 –24.54 –0.79 –0.37 –16.80 –0.40 –4.73 –2.58 –1.92 5.37 × 10–15
    S2 4.5167 25.81 –24.26 –0.83 –0.40 –16.64 –0.37 –4.72 –2.52 –1.93 7.76 × 10–15
    S6 5.4285 18.10 –27.99 –0.72 –0.33 –17.93 –0.47 –5.48 –3.41 –2.72 1.54 × 10–16
    DownLoad: CSV

    表 6  双星模型B1和B2在各个主要阶段主星表面的各种元素的质量丰度的对数值

    Table 6.  Mass fraction of various chemical elements at the surfaces of the primary star at different stages in models B1 and B2

    Sequence Age/Myr $M_1/M_{\odot}$ log($X_{\rm ^{1}H}$) log($X_{\rm ^{4}He}$) log($X_{\rm ^{12}C}$) log($X_{\rm ^{14}N}$) log($X_{\rm ^{16}O}$) log($X_{\rm ^{19}F}$) log($X_{\rm ^{20}Ne}$) log($X_{\rm ^{22}Ne}$) $X_{\rm ^{26}Al}$
    ZAMS
    B1 0.0000 60.00 –0.14 –0.58 –2.62 –3.15 –2.18 –6.46 –2.87 –3.96 0
    B2 0.0000 60.00 –0.14 –0.58 –2.62 –3.15 –2.18 –6.46 –2.87 –3.96 0
    BTM1
    B1 2.6862 53.01 –0.14 –0.58 –2.62 –3.15 –2.18 –6.54 –2.95 –4.04 3.31 × 1021
    B2 2.6314 51.90 –0.14 –0.58 –2.76 –2.74 –2.21 –6.66 –2.95 –4.16 3.38 × 10–7
    ETM1
    B1 3.8956 36.84 –0.40 –0.23 –3.87 –2.06 –3.56 –9.69 –2.96 –6.62 1.81 × 10–5
    B2 2.7305 45.44 –0.16 –0.53 –3.02 –2.36 –2.38 –6.94 –2.95 –4.45 3.89 × 10–6
    ECHB
    B1 4.0397 33.60 –0.50 –0.18 –3.85 –2.05 –3.61 –9.72 –2.96 –6.61 2.45 × 10–5
    B2 4.1254 25.57 –1.06 –0.05 –3.80 –2.05 –3.67 –9.68 –2.96 –6.63 4.16 × 10–5
    BCHEB
    B1 4.0409 33.57 –0.50 –0.18 –3.85 –2.05 –3.61 –9.72 –2.96 –6.61 2.45 × 10–5
    B2 4.1297 25.44 –1.07 –0.05 –3.80 –2.05 –3.67 –9.68 –2.96 –6.63 4.16 × 10–5
    BMT2
    B1 4.0474 33.39 –0.50 –0.18 –3.85 –2.05 –3.61 –9.72 –2.96 –6.61 2.51 × 10–5
    B2 3.1581 43.04 –0.24 –0.39 –3.80 –2.09 –2.95 –8.24 –2.95 –5.76 1.31 × 10–5
    WNL
    B1 4.0480 32.78 –0.52 –0.16 –3.85 –2.05 –3.61 –9.73 –2.96 –6.62 2.81 × 10–5
    B2 3.8633 32.25 –0.52 –0.16 –3.85 –2.05 –3.61 –9.72 –2.96 –6.60 2.95 × 10–5
    EMT2
    B1 4.0562 30.44 –0.68 –0.11 –3.84 –2.05 –3.64 –9.72 –2.96 –6.60 3.89 × 10–5
    B2 3.5409 37.67 –0.28 –0.34 –3.86 –2.07 –3.16 –8.72 –2.95 –6.19 1.41 × 10–5
    WNE
    B1 4.1344 26.76 –5.00 –0.01 –3.73 –2.05 –3.76 –9.59 –2.97 –6.65 4.78 × 10–5
    B2 4.2129 22.30 –5.18 –0.01 –3.68 –2.06 –3.74 –9.45 –2.97 –6.52 4.78 × 10–5
    WC
    B1 4.1976 23.92 –28.45 –0.09 –0.80 –14.82 –2.17 –4.58 –2.97 –1.87 6.45 × 10–17
    B2 4.2498 21.01 –10.94 –0.01 –2.05 –2.10 –3.40 –5.62 –2.97 –2.91 4.36 × 10–5
    WO
    B1 4.4339 14.75 –31.67 –0.64 –0.31 –17.28 –0.58 –4.59 –2.85 –1.88 5.62 × 10–5
    B2
    ECHEB
    B1 4.4454 14.60 –31.77 –0.70 –0.31 –17.19 –0.53 –4.59 –2.82 –1.89 7.76 × 10–16
    B2 4.5716 11.27 –30.86 –0.60 –0.30 –17.45 –0.65 –4.58 –2.90 –1.88 2.45 × 10–16
    BCCB
    B1 4.4468 14.58 –31.25 –0.70 –0.31 –17.19 –0.53 –4.59 –2.82 –1.89 7.76 × 10–16
    B2 4.5741 11.24 –29.98 –0.61 –0.30 –17.44 –0.64 –4.58 –2.90 –1.88 2.51 × 10–16
    ECCB
    B1 4.4469 14.58 –31.22 –0.70 –0.31 –17.19 –0.53 –4.59 –2.82 –1.89 7.76 × 10–16
    B2 4.5743 11.24 –29.54 –0.61 –0.30 –17.44 –0.64 –4.58 –2.90 –1.88 2.51 × 10–16
    DownLoad: CSV
  • [1]

    Wolf C J E, Rayet G 1867 Academie des Sciences Paris Comptes Rendus 65 292

    [2]

    Georgy C, Ekstrom S, Meynet G, Massey P, Levesque E M, Hirschi R, Eggenberger P, Maeder A 2012 Astron. Astrophys. 542 A29Google Scholar

    [3]

    Groh J H, Meynet G, Georgy C, Ekstrom S 2013 Astron. Astrophys. 558 A131Google Scholar

    [4]

    Eldridge J J, Fraser M, Smartt S J, Maund J R, Crockett R M 2013 Mon. Not. R. Astron. Soc. 436 774Google Scholar

    [5]

    Vuissoz C, Meynet G, Kndlseder J, Cervino M, Schearer D, Palacios A, Mowlavi N 2004 New Astron. Rev. 48 7Google Scholar

    [6]

    黄润乾 2006 恒星物理 (第2版) (北京: 中国科学技术出版社) 第378−384页

    Huang R Q 2006 Stellar Physics (2nd Ed.) (Beijing: Science and Technology of China Press) pp378−384 (in Chinese)

    [7]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183Google Scholar

    [8]

    Huang R Q 2004 Astron. Astrophys. 422 981Google Scholar

    [9]

    Huang R Q 2004 Astron. Astrophys. 425 591Google Scholar

    [10]

    Kippenhahn R, Thomas H C 1969 Mitt. A. G. 27 168

    [11]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184Google Scholar

    [12]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarque P 1989 Astrophys. J. 338 424Google Scholar

    [13]

    Pinsonneault M H, Kawaler S D, Demarque P 1990 Astrophys. J. Suppl. Ser. 74 501Google Scholar

    [14]

    Pinsonneault M H, Deliyannis C P, Demarque P 1991 Astrophys. J. 367 239Google Scholar

    [15]

    宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701Google Scholar

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701Google Scholar

    [16]

    Song H F, Wang J Z, Song F, Song F, Wang J T 2017 Astron. Astrophys. 600 A42Google Scholar

    [17]

    詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701Google Scholar

    Zhan Q, Song H F, Tai L T, Wang J T 2015 Acta Phys. Sin. 64 089701Google Scholar

    [18]

    邰丽婷, 宋汉峰, 王江涛 2016 物理学报 65 049701Google Scholar

    Tai L T, Song H F, Wang J T 2016 Acta Phys. Sin. 65 049701Google Scholar

    [19]

    Zahn J P 1975 Astron. Astrophys. 41 329

    [20]

    Zahn J P 1977 Astron. Astrophys. 57 383

    [21]

    Maeder A, Meynet G 2000 Annu. Rev. Astron. Astrophys. 38 143Google Scholar

    [22]

    de Mink S E, Cantiello M, Langer N, Pols O R, Brott I, Yoon S C 2009 Astron. Astrophys. 497 243Google Scholar

    [23]

    Song H F, Meynet G, Maeder A, Ekstrom S, Eggenberger P 2016 Astron. Astrophys. 585 A120Google Scholar

    [24]

    Maeder A 1987 Astron. Astrophys. 178 159

    [25]

    Wang J T, Song H F 2016 Chin. Phys. Lett. 33 099702Google Scholar

    [26]

    Li Z, Song H F, Peng W G 2018 Chin. Phys. Lett. 35 079701Google Scholar

    [27]

    Meynet G, Maeder A 1997 Astron. Astrophys. 321 465

    [28]

    Endal A S, Sofia S 1978 Astrophys. J. 220 279Google Scholar

    [29]

    Kippenhahn R 1974 Late Stages of Stellar Evolution (Warsaw: D Reidel Publishing Co) p20

    [30]

    Heger A, Langer N, Woosley S E 2000 Astrophys. J. 528 368Google Scholar

    [31]

    Vink J S, de Koter A, Lamers H J G L M 2000 Astron. Astrophys. 362 295

    [32]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574Google Scholar

    [33]

    Nugis T, Lamers H J G L M 2000 Astron. Astrophys. 360 227

    [34]

    Eldridge J J, Vink J S 2006 Astron. Astrophys. 452 295Google Scholar

    [35]

    Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F 2011 Astrophys. J. Suppl. 192 3PGoogle Scholar

    [36]

    Paxton B, Cantiello M, Arras P, Bildsten L, Brown E F, Dotter A, Mankovich C, Montgomery M H, Stello D, Timmes F X, Townsend R 2013 Astrophys. J. Suppl. 208 4PGoogle Scholar

    [37]

    Paxton B, Marchant P, Schwab J, Bauer E B, Bildsten L, Cantiello M, Dessart L, Farmer R, Hu H, Langer N, Townsend R H D, Townsley D M, Timmes F X 2015 Astrophys. J. Suppl. 220 15PGoogle Scholar

    [38]

    Meynet G, Maeder A 2002 Astron. Astrophys. 381 25Google Scholar

  • [1] Diao Bin, Xu Yan, Huang Xiu-Lin, Wang Yi-Bo. Study of tidal deformabilities of neutron stars using relativistic mean field theory containing δ mesons. Acta Physica Sinica, 2023, 72(2): 022601. doi: 10.7498/aps.72.20221599
    [2] Liang Hua-Zhi, Zhang Jing-Yi. Evolution of complexity for critical neutral Gauss-Bonnet-anti-de Sitter black holes. Acta Physica Sinica, 2021, 70(3): 030401. doi: 10.7498/aps.70.20201286
    [3] Li Zhi, Song Han-Feng, Peng Wei-Guo, Wang Jing-Zhou, Zhan Qiong. Physical process of tidal synchronization and orbital circularization in rotating binaries. Acta Physica Sinica, 2018, 67(19): 199701. doi: 10.7498/aps.67.20181056
    [4] Tai Li-Ting, Song Han-Feng, Wang Jiang-Tao. Detail investigation of the inclined pressure structure and gravity darkening in critical rotating star Achernar. Acta Physica Sinica, 2016, 65(4): 049701. doi: 10.7498/aps.65.049701
    [5] Zhan Qiong, Song Han-Feng, Tai Li-Ting, Wang Jiang-Tao. Theoretical model of the rotationally and tidally distorted binaries. Acta Physica Sinica, 2015, 64(8): 089701. doi: 10.7498/aps.64.089701
    [6] Liang Lin-Yun, Lü Guang-Hong. Phase-field modeling of vacancy cluster evolution in Fe. Acta Physica Sinica, 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [7] Cheng Yu-Feng, Nie Wan-Sheng, Che Xue-Ke, Tian Xi-Hui, Hou Zhi-Yong, Zhou Peng-Hui. Experimental investigation on the evolution of dielectric barrier discharge plasma induced flow at different operating pressures. Acta Physica Sinica, 2013, 62(10): 104702. doi: 10.7498/aps.62.104702
    [8] Song Han-Feng, Wang Jing-Zhou, Li Yun. The effect of the radiative pressure on the potential function in asynchronous rotational binary. Acta Physica Sinica, 2013, 62(5): 059701. doi: 10.7498/aps.62.059701
    [9] Cao Xiao-Xia, Ma Song-Hua, Ren Qing-Bao, Yang Zheng. Multiple solitoff solutions and the evolution of (2+1)-dimensional breaking soliton equation. Acta Physica Sinica, 2012, 61(14): 140505. doi: 10.7498/aps.61.140505
    [10] Jiang Li-Hong, Ma Song-Hua, Fang Jian-Ping, Wu Hong-Yu. New soliton solutions and soliton evolvements for the (3+1)-dimensional Burgers system. Acta Physica Sinica, 2012, 61(2): 020510. doi: 10.7498/aps.61.020510
    [11] Lan Yu-Dan, He Li-Ming, Ding Wei, Wang Feng. Evolution of H2/O2 mixture plasma under different initial temperatures. Acta Physica Sinica, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [12] Yuan Chun-Hua, Li Xiao-Hong, Tang Duo-Chang, Yang Hong-Dao, Li Guo-Qiang. Evolution of silicon surface microstructure induced by Nd:YAG nanosecond laser. Acta Physica Sinica, 2010, 59(10): 7015-7019. doi: 10.7498/aps.59.7015
    [13] Shi Zhu-Yi, Zhang Chun-Mei, Tong Hong, Zhao Xing-Zhi, Ni Shao-Yong. Evolution from vibration to rotation of 102Ru nucleus discussed within microscopic theory. Acta Physica Sinica, 2008, 57(3): 1564-1568. doi: 10.7498/aps.57.1564
    [14] Yan Sen-Lin. Nonlinear evolution of chaotic signal transmission in optical fiber. Acta Physica Sinica, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [15] Zhang Guo-Ying, Zhang Xue-Long, Cheng Yong, Xue Liu-Ping, Han Kui. Investigation on the diamagnetic Faraday rotation spectra in Pr-substituted yttrium iron garnet. Acta Physica Sinica, 2005, 54(1): 407-410. doi: 10.7498/aps.54.407
    [16] FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica, 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
    [17] LI LIN-SEN. EFFECT OF GRAVITATIONAL RADIATION DAMPING ON THE VARIATION OF THE ORBITAL ELEMENTS OF BINARY SYSTEMS——THE EFFECT ON THE TIME OF PASSING PERIGEE OF BINARY STAR. Acta Physica Sinica, 1994, 43(5): 694-698. doi: 10.7498/aps.43.694
    [18] MENG JIE. VARIATION OF PAIR CORRELATION IN FAST ROTATING NUCLEI. Acta Physica Sinica, 1993, 42(3): 368-372. doi: 10.7498/aps.42.368
    [19] ZHANG ZHI-XIANG. THE TRAJECTORY OF THE EXTRAORDINARY RAY AS THE CRYSTAL ROTATES. Acta Physica Sinica, 1980, 29(11): 1483-1489. doi: 10.7498/aps.29.1483
    [20] SHEN HUNG-TAO, YEUAN TU-NAN, LEE YANG-KOU. ROTATIONAL SPECTRUM OF F19. Acta Physica Sinica, 1959, 15(8): 440-446. doi: 10.7498/aps.15.440
Metrics
  • Abstract views:  10224
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2019
  • Accepted Date:  12 August 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回