Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of the evolutionary stage of H and He burning in the center of massive rotating Population Ⅲ stars

ZHAN Qiong SONG Hanfeng QI Shitao QU Xinyue HAN Zhuo ZHONG Wenli

Citation:

Study of the evolutionary stage of H and He burning in the center of massive rotating Population Ⅲ stars

ZHAN Qiong, SONG Hanfeng, QI Shitao, QU Xinyue, HAN Zhuo, ZHONG Wenli
cstr: 32037.14.aps.74.20250704
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The effects of rotation on the evolution of Population Ⅲ (Pop Ⅲ) stars in the burning stages of core H and He are investigated. Due to their zero-metallicity nature, these stars are initially unable to burn hydrogen through the CNO cycle (Here, C, N, and O stand for carbon, nitrogen, and oxygen, respectively). And without this crucial energy supply, they experience a contraction phase during the early main sequence (MS). The lack of CNO elements not only affects the central region of the star but also leads to energy increase (due to triggering of the CNO cycle) in the stellar envelope due to the outward diffusion of He-burning products. Therefore, rotational mixing has a unique effect on these stars.Rotation significantly affects the observable properties of Pop Ⅲ stars through two main effects. One is that rotational mixing brings additional fuel into the nuclear burning core, which increases the luminosity as well as the stellar lifetimes, and the other is that rotational mixing brings He-burning products from the core to the H-burning shell during later evolutionary phases. This will change the temperature distribution, and may lead to significant expansion in some models, depending on the relative core size. The relative core size is crucial here, because the contribution of the outer shell and the core to the total energy produced tells us about the structure of the star and dominant factors in the evolution of the surface properties.Despite weaker meridional currents in Pop Ⅲ stars, angular momentum can accumulate at the surface in fast-rotating massive models because of their negligible mass loss through radiative winds. This spin-up causes the models with an initial mass of 40M, an initial velocity of υini = 400 km/s, and a metallicity of Z = 10–4 to reach critical rotation during the MS, resulting in increased mass loss.Rotational mixing strongly affects metal enrichment, but unlike stars with high metallicity, it cannot consistently enhance metal production. Rotation leads to an early enhancement of CNO in the H shell during He burning, which may hinder metal enrichment. This effect also occurs during the core He-burning phase. In these cases, the convection caused by the CNO enhancement in the H shell will lead to the retraction of the He-burning core. As the core grows, the speed at which the H shell moves outwards is faster than the speed at which the He-burning products can be expelled from the core through rotational mixing, therefore hindering the interaction of these products with the H-burning shell, which is necessary for metal enrichment. H-He shell interactions after core He burning play a crucial role in metal production, where the rotation may enhance enrichment. This highlights the complexity in the metal enrichment processes of these models. A detailed understanding of the interior structure is therefore required to accurately predict metal yields.
      Corresponding author: SONG Hanfeng, hfsong@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12173010, 11863003) and the Internal Structure of Stars and Microscopic Physical Processes, China.
    [1]

    Savage B D, Sembach K R 1996 Annu. Rev. Astron. Astrophys. 34 279Google Scholar

    [2]

    Draine B T 2003 Annu. Rev. Astron. Astrophys. 41 241Google Scholar

    [3]

    Jenkins E B 2009 Astrophys. J. 700 1299Google Scholar

    [4]

    Meynet G, Georgy C, Hirschi R, Maeder A, Massey P, Przybilla N, Nieva M F 2011 Bull. R. Soc. Sci. Liège. 80 266Google Scholar

    [5]

    Cui Z, Wang Z J, Zhu C H 2018 Publ. Astron. Soc. Pac. 130 084202Google Scholar

    [6]

    彭卫国, 宋汉锋, 詹琼, 吴兴华, 景江红 2019 物理学报 68 219701Google Scholar

    Peng W G, Song H F, Zhan Q, Wu X H, Jing J H 2019 Acta Phys. Sin. 68 219701Google Scholar

    [7]

    Wu F W, Song H F, Li Q L, He Y, Qu X Y, Han Z 2024 Chin. Phys. Lett. 41 089701Google Scholar

    [8]

    Marigo P, Chiosi C, Kudritzki R P 2003 Astron. Astrophys. 399 617Google Scholar

    [9]

    Marigo P, Girardi L, Chiosi C, Wood P R 2001 Astron. Astrophys. 371 152Google Scholar

    [10]

    Ekström S, Meynet G, Chiappini C, Hirschi R, Maeder A 2008 Astron. Astrophys. 489 685Google Scholar

    [11]

    Yoon S C, Dierks A, Langer N 2012 Astron. Astrophys. 542 A113Google Scholar

    [12]

    Ekström S, Georgy C, Eggenberger P, Meynet G, Mowlavi N, Wyttenbach A, Granada A, Decressin T, Hirschi R, Frischknecht U, Charbonnel C, Maeder A 2012 Astron. Astrophys. 537 A146Google Scholar

    [13]

    Georgy C, Ekström S, Eggenberger P, Meynet G, Haemmerlé L, Maeder A, Granada A, Groh J H, Hirschi R, Mowlavi N, Yusof N, Charbonnel C, Decressin T, Barblan F 2013 Astron. Astrophys. 558 A103Google Scholar

    [14]

    Groh J H, Ekström S, Georgy C, Meynet G, Choplin A, Eggenberger P, Hirschi R, Maeder A, Murphy L J, Boian I, Farrell E J 2019 Astron. Astrophys. 627 A24Google Scholar

    [15]

    Bromm V, Kudritzki R P, Loeb A 2001 Astrophys. J. 552 464Google Scholar

    [16]

    Abel T, Bryan G L, Norman M L 2002 Sci. 295 93Google Scholar

    [17]

    Heger A, Woosley S E 2002 Astrophys. J. 567 532Google Scholar

    [18]

    Brott I, de Mink S E, Cantiello M, Langer N, de Koter A, Evans C J, Hunter I, Trundle C, Vink J S 2011 Astron. Astrophys. 530 A115Google Scholar

    [19]

    Stacy A, Bromm V, Loeb A 2011 Mon. Not. R. Astron. Soc. 413 543Google Scholar

    [20]

    Stacy A, Greif T H, Klessen R S, Bromm V, Loeb A 2013 Mon. Not. R. Astron. Soc. 431 1470Google Scholar

    [21]

    Hirano S, Bromm V 2018 Mon. Not. R. Astron. Soc. 476 3964Google Scholar

    [22]

    Murphy L J, Groh J H, Ekström S, Meynet G, Pezzotti C, Georgy C, Choplin A, Eggenberger P, Farrell E, Haemmerlé L, Hirschi R, Maeder A, Martinet S 2021 Mon. Not. R. Astron. Soc. 501 2745Google Scholar

    [23]

    Sibony Y, Liu B, Simmonds C, Meynet G, Bromm V 2022 Astron. Astrophys. 666 A199Google Scholar

    [24]

    Aryan A, Pandey S B, Gupta R, Ror A K 2023 Mon. Not. R. Astron. Soc. 521 L17Google Scholar

    [25]

    Tsiatsiou S, Sibony Y, Nandal D, Sciarini L, Hirai Y, Ekström S, Farrell E, Murphy L, Choplin A, Hirschi R, Chiappini C, Liu B, Bromm V, Groh J, Meynet G 2024 Astron. Astrophys. 687 A307Google Scholar

    [26]

    Zahn J P 1992 Astron. Astrophys. 265 115Google Scholar

    [27]

    Maeder A, Zahn J P 1998 Astron. Astrophys. 334 1000Google Scholar

    [28]

    Kippenhahn R, Thomas H C 1969 Mitt. Astron. Ges. 27 168Google Scholar

    [29]

    Maeder A, Meynet G 2004 Proceedings of IAU Symposium Cancun, Yucatan, Mexico, November 11-15, 2002 p500

    [30]

    Kaehler H 1986 Astron. Astrophys. 157 329Google Scholar

    [31]

    Maeder A, Meynet G 2012 Reviews of Modern Physics. 84 25Google Scholar

    [32]

    Heger A, Langer N, Woosley S E 2000 Astrophys. J. 528 368Google Scholar

    [33]

    Maeder A 1995 Astron. Astrophys. 299 84Google Scholar

    [34]

    Maeder A 1997 Astron. Astrophys. 321 134Google Scholar

    [35]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574Google Scholar

    [36]

    Iglesias C A, Rogers F J 1996 Astrophys. J. 464 943Google Scholar

    [37]

    Ferguson J W, Alexander D R, Allard F, Hauschildt P H 2001 Astrophys. J. 557 798Google Scholar

    [38]

    Asplund M, Grevesse N, Sauval A J 2005 Astronomical Society of the Pacific Conference Series Austin, Texas, June 17-19, 2004 p25

  • 图 1  (a) 初始转速为$ {v_{{\text{ini}}}} $= 0, 200, 400 km/s的不同金属丰度的40M恒星模型的角速度比率$ \varOmega /{\varOmega _{{\text{crit}}}} $演化情况, 绿色虚线表示模型达到临界转速的位置; (b) 初始转速$ {v_{{\text{ini}}}} $= 0, 200, 400 km/s的不同金属丰度的40M恒星模型的表面赤道速度的演化情况; (c) 金属丰度Z = 10–4的40M恒星的子午环流的垂直速度在中心氢燃烧阶段的分布轮廓图

    Figure 1.  (a) The evolution of $ \varOmega /{\varOmega _{{\text{crit}}}} $ for 40M stellar models with different metallicities, and initial rotation speeds of 0, 200, and 400 km/s, the green dashed line in the figure indicates the position where the model reaches the critical rotation speed; (b) the evolution of surface equatorial velocities for 40M stellar models with different metallicities and initial rotation speeds of 0, 200, and 400 km/s; (c) the profile for the vertical components of meridional circulation in a 40M star with metallicity Z = 10–4 during the central H burning.

    图 2  (a) 金属丰度Z = 0, 40M恒星在不同初始转动速度下的星风损失随时间演化; (b) 金属丰度Z = 10–4, 40M恒星在不同初始转动速度下的星风损失随时间演化

    Figure 2.  (a) The evolution of stellar wind mass loss with time for 40M with Z = 0 metallicity under different initial rotation speeds; (b) the evolution of stellar wind mass loss with time for 40M with Z = 10–4 metallicity under different initial rotation speeds.

    图 3  (a) 无转动情况下金属丰度Z = 0和Z = 10–4的大质量恒星在赫罗图中的演化; (b) 40M恒星在不同转动速度和不同金属丰度下的赫罗图的演化

    Figure 3.  (a) The evolution of massive stars with Z = 0 and Z = 10–4 metallicities in the HR diagram under non-rotation conditions; (b) the evolution of HR diagrams for 40M stars under different rotation speeds and metallicities.

    图 4  (a) 金属丰度Z = 0, 40M恒星在不同初始转动速度下的对流核随时间演化; (b) 金属丰度Z = 10–4, 40M恒星在不同初始转动速度下的对流核随时间演化

    Figure 4.  (a) The evolution of convection cores with time for 40M with 0 metallicity under different initial rotation speeds; (b) the evolution of convection cores with time for 40M with 10–4 metallicity under different initial rotation speeds.

    图 5  (a) 金属丰度Z = 0的40M恒星在不同初始转动速度下表面14N随时间的演化; (b) 金属丰度Z = 10–4的40M恒星在不同初始转动速度下表面14N随时间的演化

    Figure 5.  (a) The evolution of surface N-14 abundance with time for 40M with 0 metallicity under different initial rotation speeds; (b) the evolution of surface 14N abundance with time for 40M with 10–4 metallicity under different initial rotation speeds.

    图 6  (a) 40M恒星在不同初始转动速度和金属丰度下中心温度随时间的演化; (b) 40M恒星在不同初始转动速度和金属丰度下中心密度随时间的演化

    Figure 6.  (a) The evolution of central temperature with time for 40M stars under different initial rotation and metallicities; (b) the evolution of central density with time for 40M stars under different initial rotation and metallicities.

    图 7  40M的转动恒星金属丰度分别为Z = 0和Z = 10–4的模型在氦燃烧阶段3个不同时刻(以中心氦含量Yc为标识)的能量产生率分布图, 图中绿色(黑色)实线分别代表氦(氢)燃烧产生的能量, 红色虚线表示对应光度对总光度的贡献比例(数值标注于右侧纵轴), 对流区域用灰色阴影区域表示 (a1), (a2) Yc = 0.8; (b1), (b2) Yc = 0.5; (c1), (c2) Yc = 0.2

    Figure 7.  Energy production capacity distribution diagrams at three different moments during the He-burning core phase for rotating 40M stellar models with metallicities of 0 and 10–4, the green (or black) solid line represent the energy generated by He (or H) burning, respectively, the red dashed line indicates the contribution ratio of the corresponding luminosity to the total luminosity(the numerical values are labeled on the right vertical axis), convective regions are indicated by the grey shaded areas: (a1), (a2) Yc = 0.8; (b1), (b2) Yc = 0.5; (c1), (c2) Yc = 0.2.

    图 8  初始转动速度为400 km/s的40M恒星模型在金属丰度为Z = 0和Z = 10–4下氦燃烧阶段3个不同时刻(以中心氦含量Yc为标识)的元素丰度分布, 丰度曲线展示了恒星从中心到表面的化学元素分布, 对流区域用灰色阴影区域表示 (a1), (a2) Yc = 0.8; (b1), (b2) Yc = 0.5; (c1), (c2) Yc = 0.2

    Figure 8.  Elemental abundance distributions at three different moments during the He-burning phase for 40M stellar models with an initial rotation speed of 400 km/s, under two metallicities cases Z = 0 and Z = 10–4, the curves in the figure show the chemical element distribution from the center to the surface of the star, convective regions are indicated by the grey shaded areas: (a1), (a2) Yc = 0.8; (b1), (b2) Yc = 0.5; (c1), (c2) Yc = 0.2.

  • [1]

    Savage B D, Sembach K R 1996 Annu. Rev. Astron. Astrophys. 34 279Google Scholar

    [2]

    Draine B T 2003 Annu. Rev. Astron. Astrophys. 41 241Google Scholar

    [3]

    Jenkins E B 2009 Astrophys. J. 700 1299Google Scholar

    [4]

    Meynet G, Georgy C, Hirschi R, Maeder A, Massey P, Przybilla N, Nieva M F 2011 Bull. R. Soc. Sci. Liège. 80 266Google Scholar

    [5]

    Cui Z, Wang Z J, Zhu C H 2018 Publ. Astron. Soc. Pac. 130 084202Google Scholar

    [6]

    彭卫国, 宋汉锋, 詹琼, 吴兴华, 景江红 2019 物理学报 68 219701Google Scholar

    Peng W G, Song H F, Zhan Q, Wu X H, Jing J H 2019 Acta Phys. Sin. 68 219701Google Scholar

    [7]

    Wu F W, Song H F, Li Q L, He Y, Qu X Y, Han Z 2024 Chin. Phys. Lett. 41 089701Google Scholar

    [8]

    Marigo P, Chiosi C, Kudritzki R P 2003 Astron. Astrophys. 399 617Google Scholar

    [9]

    Marigo P, Girardi L, Chiosi C, Wood P R 2001 Astron. Astrophys. 371 152Google Scholar

    [10]

    Ekström S, Meynet G, Chiappini C, Hirschi R, Maeder A 2008 Astron. Astrophys. 489 685Google Scholar

    [11]

    Yoon S C, Dierks A, Langer N 2012 Astron. Astrophys. 542 A113Google Scholar

    [12]

    Ekström S, Georgy C, Eggenberger P, Meynet G, Mowlavi N, Wyttenbach A, Granada A, Decressin T, Hirschi R, Frischknecht U, Charbonnel C, Maeder A 2012 Astron. Astrophys. 537 A146Google Scholar

    [13]

    Georgy C, Ekström S, Eggenberger P, Meynet G, Haemmerlé L, Maeder A, Granada A, Groh J H, Hirschi R, Mowlavi N, Yusof N, Charbonnel C, Decressin T, Barblan F 2013 Astron. Astrophys. 558 A103Google Scholar

    [14]

    Groh J H, Ekström S, Georgy C, Meynet G, Choplin A, Eggenberger P, Hirschi R, Maeder A, Murphy L J, Boian I, Farrell E J 2019 Astron. Astrophys. 627 A24Google Scholar

    [15]

    Bromm V, Kudritzki R P, Loeb A 2001 Astrophys. J. 552 464Google Scholar

    [16]

    Abel T, Bryan G L, Norman M L 2002 Sci. 295 93Google Scholar

    [17]

    Heger A, Woosley S E 2002 Astrophys. J. 567 532Google Scholar

    [18]

    Brott I, de Mink S E, Cantiello M, Langer N, de Koter A, Evans C J, Hunter I, Trundle C, Vink J S 2011 Astron. Astrophys. 530 A115Google Scholar

    [19]

    Stacy A, Bromm V, Loeb A 2011 Mon. Not. R. Astron. Soc. 413 543Google Scholar

    [20]

    Stacy A, Greif T H, Klessen R S, Bromm V, Loeb A 2013 Mon. Not. R. Astron. Soc. 431 1470Google Scholar

    [21]

    Hirano S, Bromm V 2018 Mon. Not. R. Astron. Soc. 476 3964Google Scholar

    [22]

    Murphy L J, Groh J H, Ekström S, Meynet G, Pezzotti C, Georgy C, Choplin A, Eggenberger P, Farrell E, Haemmerlé L, Hirschi R, Maeder A, Martinet S 2021 Mon. Not. R. Astron. Soc. 501 2745Google Scholar

    [23]

    Sibony Y, Liu B, Simmonds C, Meynet G, Bromm V 2022 Astron. Astrophys. 666 A199Google Scholar

    [24]

    Aryan A, Pandey S B, Gupta R, Ror A K 2023 Mon. Not. R. Astron. Soc. 521 L17Google Scholar

    [25]

    Tsiatsiou S, Sibony Y, Nandal D, Sciarini L, Hirai Y, Ekström S, Farrell E, Murphy L, Choplin A, Hirschi R, Chiappini C, Liu B, Bromm V, Groh J, Meynet G 2024 Astron. Astrophys. 687 A307Google Scholar

    [26]

    Zahn J P 1992 Astron. Astrophys. 265 115Google Scholar

    [27]

    Maeder A, Zahn J P 1998 Astron. Astrophys. 334 1000Google Scholar

    [28]

    Kippenhahn R, Thomas H C 1969 Mitt. Astron. Ges. 27 168Google Scholar

    [29]

    Maeder A, Meynet G 2004 Proceedings of IAU Symposium Cancun, Yucatan, Mexico, November 11-15, 2002 p500

    [30]

    Kaehler H 1986 Astron. Astrophys. 157 329Google Scholar

    [31]

    Maeder A, Meynet G 2012 Reviews of Modern Physics. 84 25Google Scholar

    [32]

    Heger A, Langer N, Woosley S E 2000 Astrophys. J. 528 368Google Scholar

    [33]

    Maeder A 1995 Astron. Astrophys. 299 84Google Scholar

    [34]

    Maeder A 1997 Astron. Astrophys. 321 134Google Scholar

    [35]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574Google Scholar

    [36]

    Iglesias C A, Rogers F J 1996 Astrophys. J. 464 943Google Scholar

    [37]

    Ferguson J W, Alexander D R, Allard F, Hauschildt P H 2001 Astrophys. J. 557 798Google Scholar

    [38]

    Asplund M, Grevesse N, Sauval A J 2005 Astronomical Society of the Pacific Conference Series Austin, Texas, June 17-19, 2004 p25

  • [1] LI Chenkai, ZHU Jinlong. Optoelectronic properties of high pressure regulated transition metal chalcogenides and their heterostructures. Acta Physica Sinica, 2025, 74(17): 176802. doi: 10.7498/aps.74.20250498
    [2] Zhao Shi-Yi, Liu Cheng-Zhi, Huang Xiu-Lin, Wang Yi-Bo, Xu Yan. Effects of strong magnetic field on moment of inertia and surface gravitational redshift in neutron star. Acta Physica Sinica, 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [3] Liu Hui-Ying, Wang Shu-Shen, Lin Heng-Fu. Group III monochalcogenide of single-layered haeckelites structure MX (M = Al, Ga, In; X = S, Se, Te). Acta Physica Sinica, 2020, 69(14): 146802. doi: 10.7498/aps.69.20191955
    [4] Peng Wei-Guo, Song Han-Feng, Zhan Qiong, Wu Xing-Hua, Jing Jiang-Hong. Formation and internal nucleosynthesis in massive rotating Wolf-Rayet stars. Acta Physica Sinica, 2019, 68(21): 219701. doi: 10.7498/aps.68.20191040
    [5] Zhou Yu-Zhi. Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system. Acta Physica Sinica, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [6] Li Zhi, Song Han-Feng, Peng Wei-Guo, Wang Jing-Zhou, Zhan Qiong. Physical process of tidal synchronization and orbital circularization in rotating binaries. Acta Physica Sinica, 2018, 67(19): 199701. doi: 10.7498/aps.67.20181056
    [7] Tai Li-Ting, Song Han-Feng, Wang Jiang-Tao. Detail investigation of the inclined pressure structure and gravity darkening in critical rotating star Achernar. Acta Physica Sinica, 2016, 65(4): 049701. doi: 10.7498/aps.65.049701
    [8] Zhan Qiong, Song Han-Feng, Tai Li-Ting, Wang Jiang-Tao. Theoretical model of the rotationally and tidally distorted binaries. Acta Physica Sinica, 2015, 64(8): 089701. doi: 10.7498/aps.64.089701
    [9] Wang Jin, Li Chun-Mei, Ao Jing, Li Feng, Chen Zhi-Qian. Elastic and optical properties of IVB group transition-metal nitrides. Acta Physica Sinica, 2013, 62(8): 087102. doi: 10.7498/aps.62.087102
    [10] Song Han-Feng, Wang Jing-Zhou, Li Yun. The effect of the radiative pressure on the potential function in asynchronous rotational binary. Acta Physica Sinica, 2013, 62(5): 059701. doi: 10.7498/aps.62.059701
    [11] Li Hai-Bin, Wang Bo-Hua, Zhang Zhi-Qiang, Liu Shuang, Li Yan-Shu. Combination resonance bifurcations and chaos of some nonlinear relative rotation system. Acta Physica Sinica, 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [12] Fu Hong-Yang, Wen De-Hua, Yan Jing. Properties of rapidly rotating hybrid stars with non-Newtonian gravity. Acta Physica Sinica, 2012, 61(20): 209701. doi: 10.7498/aps.61.209701
    [13] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [14] Wang Yong, Guo Yong-Xin, Lü Qun-Song, Liu Chang. Nonholonomic mapping theory and geometric formulation for rotation of a rigid body with one fixed point. Acta Physica Sinica, 2009, 58(8): 5142-5149. doi: 10.7498/aps.58.5142
    [15] Shi Pei-Ming, Jiang Jin-Shui, Liu Bin. Stability and approximate solution of a relative-rotation nonlinear dynamical system with coupled terms. Acta Physica Sinica, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [16] Wang Hua, Liu Shi-Lin, Liu Jie, Wang Feng-Yan, Jiang Bo, Yang Xue-Ming. Rovibronic spectrum of N2O+ ion at the A2Σ+ state. Acta Physica Sinica, 2008, 57(2): 796-802. doi: 10.7498/aps.57.796
    [17] Shi Zhu-Yi, Zhang Chun-Mei, Tong Hong, Zhao Xing-Zhi, Ni Shao-Yong. Evolution from vibration to rotation of 102Ru nucleus discussed within microscopic theory. Acta Physica Sinica, 2008, 57(3): 1564-1568. doi: 10.7498/aps.57.1564
    [18] FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica, 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
    [19] YAN HONG, CHANG ZHE, GUO HAN-YING. q-ROTATING OSCILLATOR MODEL (I)——q-Oscillator and Vibrational Spectra of Diatomic Molecules. Acta Physica Sinica, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
    [20] GU BEN-YUAN, DONG BI-ZHEN, ZHENG SHI-HAI, YANG GUO-ZHEN. SPACE-INVARIANT AND ROTATION-INVARIANT IN A GIVEN ANGLE RANGE PATTERN RECOGNITION AND THEIR FILTER DESIGN. Acta Physica Sinica, 1985, 34(6): 760-765. doi: 10.7498/aps.34.760
Metrics
  • Abstract views:  407
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2025
  • Accepted Date:  07 July 2025
  • Available Online:  17 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回