-
Due to the potential applications for spintronics devices, diluted ferromagnetic semiconductors (DMS) have received extensive attention for decades. However, in classical Ⅲ–Ⅴ based DMS material, such as (Ga,Mn)As, heterovalent (Ga3+, Mn2+) doping results in lack of individual control of carrier and spin doping, and seriously limited chemical solubility. The two difficulties prevent furtherincrease of the Curie temperature of the Ⅲ–Ⅴ based DMS. To overcome these difficulties, a series of new types of DMS with independent spin and charge doping have been synthesized, such as Ⅰ–Ⅱ–Ⅴ based LiZnAs and Ⅱ–Ⅱ–Ⅴ based (Ba,K)(Zn,Mn)2As2. In these new materials, isovalent (Zn,Mn) substitution is only spin doping, while charge is independently doped by heterovalentsubstitution of non-magnetic elements. As a result (Ba,K)(Zn,Mn)2As2 obtains the reliable record of Curie temperature (230 K) among DMS in which ferromagnetic ordering is mediated by itinerate carriers. In this review, we summarize the recent development of the new DMS materials with following aspects: 1) the discovery and synthesis of several typical new DMS materials; 2) physical properties studies with muon spin relaxation and in-situ high pressure techniques; 3) single crystal growth, Andreev reflection junction based on single crystal and measurements of spin polarization.
-
Keywords:
- newt type of diluted magnetic semiconductor /
- independent charge and spin doping /
- high Curie temperature /
- heterojunction based on single
[1] Furdyna J K 1991 Diluted Magnetic Semiconductors(National Academy Press)
[2] Zutic I, Fabian J, Das Sarma S 2004 Rev. Modern Phys. 76 323Google Scholar
[3] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar
[4] ZHAO J 2016 Chin. Sci. Bull. 61 1401Google Scholar
[5] 常凯, 夏建白 2004 物理 33 414Google Scholar
Chang K, Xia J B 2004 Physics 33 414Google Scholar
[6] Ohno H 1998 Science 281 951Google Scholar
[7] Dietl T 2000 Science 287 1019Google Scholar
[8] Kennedy D, Norman C 2005 Science 309 75Google Scholar
[9] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar
[10] 赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109
Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109
[11] Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar
[12] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar
[13] 邓正, 赵侃, 靳常青 2013 物理 42 682Google Scholar
Deng Z, Zhao K, Jin C Q 2013 Physics 42 682Google Scholar
[14] Han W, Zhao K, Wang X, Liu Q, Ning F, Deng Z, Liu Y, Zhu J, Ding C, Man H, Jin C 2013 Sci. China: Phys. Mech. Astron. 56 2026Google Scholar
[15] Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(R)Google Scholar
[16] Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar
[17] Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar
[18] Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C 2014 Chin. Sci. Bull. 59 2524Google Scholar
[19] Žutić I, Zhou T 2018 Sci. China: Phys. Mech. Astron. 61 067031Google Scholar
[20] Chen B J, Zhao K, Deng Z, Han W, Zhu J L, Wang X C, Liu Q Q, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Uemura Y J, Jin C Q 2014 Phys. Rev. B 90 155202Google Scholar
[21] Ning F L, Man H, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B 2014 Phys. Rev. B 90 085123Google Scholar
[22] Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar
[23] Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(R)Google Scholar
[24] Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B, Jin C, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar
[25] Gu B, Maekawa S 2016 Phys. Rev. B 94 155202Google Scholar
[26] Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar
[27] Chen B, Deng Z, Wang X, Feng S, Yuan Z, Zhang S, Liu Q, Jin C 2016 Chin. Phys. B 25 077503Google Scholar
[28] Chen B, Deng Z, Li W, Gao M, Zhao J, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 AIP Adv. 6 115014Google Scholar
[29] Chen B, Deng Z, Li W, Gao M, Liu Q, Gu CZ, Hu F X, Shen B G, Frandsen B, Cheung S, Lian L, Uemura Y J, Ding C, Guo S, Ning F, Munsie T J, Wilson M N, Cai Y, Luke G, Guguchia Z, Yonezawa S, Li Z, Jin C 2016 Sci. Rep. 6 36578Google Scholar
[30] Chen B, Deng Z, Li W, Gao M, Li Z, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 J. Appl. Phys. 120 083902Google Scholar
[31] Wang R, Huang Z X, Zhao G Q, Yu S, Deng Z, Jin C Q, Jia Q J, Chen Y, Yang T Y, Jiang X M, Cao L X 2017 AIP Adv. 7 045017Google Scholar
[32] Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar
[33] Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar
[34] Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar
[35] Zhao G Q, Li Z, Sun F, Yuan Z, Chen B J, Yu S, Peng Y, Deng Z, Wang X C, Jin C Q 2018 J. Phys.: Condensed Matter 30 254001Google Scholar
[36] Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng, Z Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Scientific Reports 9 7490Google Scholar
[37] Peng Y, Yu S, Zhao G Q, Li W M, Zhao J F, Cao L P, Wang X C, Liu Q Q, Zhang S J, Yu R Z, Deng Z, Zhu X H, Jin C Q 2019 Chin. Phys. B 28 057501Google Scholar
[38] Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(R)Google Scholar
[39] Furdyna J K 2016 Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temprature Spintronics (Woodhead Publishing)
[40] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944
[41] Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(R)Google Scholar
[42] Ding C, Ning F 2014 Sci. Sin.: Phys Mech. Astron. 44 1140Google Scholar
[43] Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar
[44] Novak V, Olejnik K, Wunderlich J, Cukr M, Vyborny K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J, Jungwirth T 2008 Phys. Rev. Lett. 101 077201Google Scholar
[45] Xiao Z, Hiramatsu H, Ueda S, Toda Y, Ran F Y, Guo J, Lei H, Matsuishi S, Hosono H, Kamiya T 2014 J. Am. Chem. Soc. 136 14959Google Scholar
[46] Braden J G, Parker J S, Xiong P, Chun S H, Samarth N 2003 Phys. Rev. Lett. 91 056602Google Scholar
[47] Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar
[48] Gu G, Zhao G, Lin C, Li Y, Jin C, Xiang G 2018 Appl. Phys. Lett. 112 032402Google Scholar
-
图 1 (a) (Ga,Mn)As的晶体结构, 其中Mn同时引入电荷和自旋; (b) Li(Zn,Mn)As的晶体结构, 其中Mn仅引入自旋, 电荷来自Li含量的变化[12]
Figure 1. (a) Crystal structure of (Ga,Mn)As, in which dependent charge and spin doping by Mn2+ dopant; (b) crystal structure of Li(Zn,Mn)As, in which spin is doped by isovalent (Zn,Mn) substitution while charge is doped by controlling Li concentration[12].
图 2 (a)不同Mn含量Li1.1(Zn,Mn)As的M(T)曲线; (b)不同Mn含量Li1.1(Zn,Mn)As的M(H)曲线, 其中灰色的磁滞回线对应了上方的横坐标; (c)样品Li1.1(Zn0.95Mn0.05)As在低温下的霍尔电阻, 15 K以下表现出了明显的反常霍尔效应[12]
Figure 2. (a) Temperature dependence of magnetization of Li1.1(Zn1-xMnx)As; (b) field dependence of magnetization of Li1.1(Zn1-xMnx)As at various tempeartures; (c) Hall resistance of Li1.1(Zn0.95Mn0.05)As and the anomalous Hall effect below 15 K[12].
图 3 (a) BZA的晶体结构中, Mn引入自旋, K引入电荷; (b) Li(Zn,Mn)As中[Zn/MnAs4]四面体的间距; (c) BZA中[Zn/MnAs4]四面体的间距[17]
Figure 3. (a) Crystal structure of BZA, in which spin is doped by isovalent (Zn,Mn) substitution while charge is doped by (Ba,K)substitution; (b) distance of nearest [Zn/MnAs4] tetrahedra (4.20 Å) in Li(Zn,Mn)As; (c) distance of nearest [Zn/MnAs4] tetrahedra (2.91 Å) in BZA[17].
图 4 (a)不同K, Mn含量(Ba,K)(Zn,Mn)2As2的ρ(T)曲线; (b)样品(Ba0.7K0.3)(Zn0.85Mn0.15)2As2的M(T)和M(H), M(T)中上升的拐点即为230 K的居里温度点; (c)样品(Ba0.85K0.15)(Zn0.9Mn0.1)2As2在低温下的霍尔电阻, 50 K以下表现出了明显的反常霍尔效应[17]
Figure 4. (a) Temperature dependence of resistivity of (Ba,K)(Zn,Mn)2As2; (b) temperature dependence of magnetization and field dependence of magnetization (inset) of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, the upturn point, namely Curie temperature is 230 K; (c) Hall resistance of (Ba0.85K0.15)(Zn0.9Mn0.1)2As2 and the anomalous Hall effect below 50 K[17].
图 5 μSR测试结果汇总 (a) ZF模式下Li1.1(Zn0.95Mn0.05)As的时间谱; (b) ZF模式与WTF模式下Li1.1(Zn0.95Mn0.05)As铁磁含量的拟合结果, 两者互相吻合[12]; (c) ZF模式下(Ba0.80K0.20)(Zn0.9Mn0.1)2As2的时间谱; (d) ZF模式与WTF模式下(Ba0.80K0.20)(Zn0.9Mn0.1)2As2铁磁含量的拟合结果, 铁磁体积含量与SQUID的测量结果吻合[17]
Figure 5. Results of muon spin relaxation measurements: (a) Time spectra of Li1.1(Zn0.95Mn0.05)As in ZF process; (b) the volume fraction of the magnetically ordered region in Li1.1(Zn0.95Mn0.05)As, derived from ZF and WTF spectra[12]; (c) time spectra of (Ba0.80K0.20)(Zn0.9Mn0.1)2As2 in ZF process; (d) the volume fraction of the magnetically ordered region in (Ba0.80K0.20)(Zn0.9Mn0.1)2As2, derived from ZF and WTF spectra[17].
图 6 (Ba0.75K0.25)(Zn0.95Mn0.05)2As2的高压表征 (a)常压下As的K边XAS和XMCD谱; (b) 2 K时高压原位的As-K边XMCD谱, 插图为XMCD谱的最高值随压力的变化; (c) 不同压力的电阻-温度曲线; (d)常温下XES谱随压力的演化, 插图为ΔE'随压力变化[26,34]
Figure 6. In-situ high pressure properties of (Ba0.75K0.25)(Zn0.95Mn0.05)2As2: (a) As K-edge XAS near edge structure (black curve) and XMCD (blue curve) data takenat T = 2 K and ambient pressure; (b) pressure-dependent As K-edge XMCD signal, the inset is XMCD peak intensity normalized to unity at ambient pressure, dreen data points are compression data, while the red data point was obtained on decompression; (c) temperature-dependent resistance plots at various pressures; (d) X-ray emission spectra at high pressures and room temperature, the spectra were shifted in the vertical for clarity, red solid lines are fits using three Gaussian functions; left corner inset: energy difference ΔE'[26,34].
图 7 (Ba0.80K0.20)(Zn0.95Mn0.05)2As2的晶格常数随压力的变化, 左下角插图显示了ZnAs层间As-As距离, 右上角插图显示了MnAs4四面体内的As-Zn-As夹角α[34]
Figure 7. Lattice parameters of (Ba0.80K0.20)(Zn0.95Mn0.05)2As2 as a function of pressure. Data were normalized to unity at ambient pressure. Left corner inset: crystal structure of (Ba,K)(Zn,Mn)2As2, and the pressure dependence of interlayer As-As distance d. Upper right corner inset: MnAs4 tetrahedron geometry, and the pressure dependence of As-Mn-As bond angle α in the MnAs4 tetrahedron[34].
图 9 (a) 2θ模式下BZA单晶的XRD谱, 插图为单晶照片以及晶体结构示意图; (b)沿不同方向测量的BZA单晶的M(T)曲线; (c)以BZA单晶为基础构造的安德烈夫反射结示意图[47]
Figure 9. (a) XRD pattern of BZA single crystal with 2θ process, the insets are photographic of the single crystal and crystal structure of BZA; (b) temperature dependence of magnetization of the single crystal along ab-plane and c-axis; (c) sketch of the Andreev reflection junction based on BZA single crystal[47].
-
[1] Furdyna J K 1991 Diluted Magnetic Semiconductors(National Academy Press)
[2] Zutic I, Fabian J, Das Sarma S 2004 Rev. Modern Phys. 76 323Google Scholar
[3] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar
[4] ZHAO J 2016 Chin. Sci. Bull. 61 1401Google Scholar
[5] 常凯, 夏建白 2004 物理 33 414Google Scholar
Chang K, Xia J B 2004 Physics 33 414Google Scholar
[6] Ohno H 1998 Science 281 951Google Scholar
[7] Dietl T 2000 Science 287 1019Google Scholar
[8] Kennedy D, Norman C 2005 Science 309 75Google Scholar
[9] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar
[10] 赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109
Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109
[11] Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar
[12] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar
[13] 邓正, 赵侃, 靳常青 2013 物理 42 682Google Scholar
Deng Z, Zhao K, Jin C Q 2013 Physics 42 682Google Scholar
[14] Han W, Zhao K, Wang X, Liu Q, Ning F, Deng Z, Liu Y, Zhu J, Ding C, Man H, Jin C 2013 Sci. China: Phys. Mech. Astron. 56 2026Google Scholar
[15] Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(R)Google Scholar
[16] Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar
[17] Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar
[18] Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C 2014 Chin. Sci. Bull. 59 2524Google Scholar
[19] Žutić I, Zhou T 2018 Sci. China: Phys. Mech. Astron. 61 067031Google Scholar
[20] Chen B J, Zhao K, Deng Z, Han W, Zhu J L, Wang X C, Liu Q Q, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Uemura Y J, Jin C Q 2014 Phys. Rev. B 90 155202Google Scholar
[21] Ning F L, Man H, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B 2014 Phys. Rev. B 90 085123Google Scholar
[22] Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar
[23] Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(R)Google Scholar
[24] Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B, Jin C, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar
[25] Gu B, Maekawa S 2016 Phys. Rev. B 94 155202Google Scholar
[26] Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar
[27] Chen B, Deng Z, Wang X, Feng S, Yuan Z, Zhang S, Liu Q, Jin C 2016 Chin. Phys. B 25 077503Google Scholar
[28] Chen B, Deng Z, Li W, Gao M, Zhao J, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 AIP Adv. 6 115014Google Scholar
[29] Chen B, Deng Z, Li W, Gao M, Liu Q, Gu CZ, Hu F X, Shen B G, Frandsen B, Cheung S, Lian L, Uemura Y J, Ding C, Guo S, Ning F, Munsie T J, Wilson M N, Cai Y, Luke G, Guguchia Z, Yonezawa S, Li Z, Jin C 2016 Sci. Rep. 6 36578Google Scholar
[30] Chen B, Deng Z, Li W, Gao M, Li Z, Zhao G, Yu S, Wang X, Liu Q, Jin C 2016 J. Appl. Phys. 120 083902Google Scholar
[31] Wang R, Huang Z X, Zhao G Q, Yu S, Deng Z, Jin C Q, Jia Q J, Chen Y, Yang T Y, Jiang X M, Cao L X 2017 AIP Adv. 7 045017Google Scholar
[32] Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar
[33] Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar
[34] Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar
[35] Zhao G Q, Li Z, Sun F, Yuan Z, Chen B J, Yu S, Peng Y, Deng Z, Wang X C, Jin C Q 2018 J. Phys.: Condensed Matter 30 254001Google Scholar
[36] Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng, Z Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Scientific Reports 9 7490Google Scholar
[37] Peng Y, Yu S, Zhao G Q, Li W M, Zhao J F, Cao L P, Wang X C, Liu Q Q, Zhang S J, Yu R Z, Deng Z, Zhu X H, Jin C Q 2019 Chin. Phys. B 28 057501Google Scholar
[38] Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(R)Google Scholar
[39] Furdyna J K 2016 Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temprature Spintronics (Woodhead Publishing)
[40] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944
[41] Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(R)Google Scholar
[42] Ding C, Ning F 2014 Sci. Sin.: Phys Mech. Astron. 44 1140Google Scholar
[43] Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar
[44] Novak V, Olejnik K, Wunderlich J, Cukr M, Vyborny K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J, Jungwirth T 2008 Phys. Rev. Lett. 101 077201Google Scholar
[45] Xiao Z, Hiramatsu H, Ueda S, Toda Y, Ran F Y, Guo J, Lei H, Matsuishi S, Hosono H, Kamiya T 2014 J. Am. Chem. Soc. 136 14959Google Scholar
[46] Braden J G, Parker J S, Xiong P, Chun S H, Samarth N 2003 Phys. Rev. Lett. 91 056602Google Scholar
[47] Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar
[48] Gu G, Zhao G, Lin C, Li Y, Jin C, Xiang G 2018 Appl. Phys. Lett. 112 032402Google Scholar
Catalog
Metrics
- Abstract views: 10906
- PDF Downloads: 184
- Cited By: 0