Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism and quantitative study of specific heat change during glass transition of amorphous polystyrene and Pd40Ni10Cu30P20

Jiang Wen-Long

Citation:

Mechanism and quantitative study of specific heat change during glass transition of amorphous polystyrene and Pd40Ni10Cu30P20

Jiang Wen-Long
PDF
HTML
Get Citation
  • The nature of glass transition is one of the most interesting problems in modern condensed matter physics. There is a theory that shows that when the particle's diffusion motion probability P is less than $ {{\rm{e}}^{ - 2{{\rm{e}}^3}}}$, the proportion of particles whose diffusion motion is frozen is not less than 1 + 2e3/lnP. Based on the modulus temperature formula of this theory and the experimental modulus-temperature curve of polystyrene in the literature, the free volume expansion coefficient of polystyrene is determined to be in a range of 0.00045-0.00052. In this paper, we first quantitatively study the specific heat temperature relationship in the glass transition of polystyrene. Based on this theory, the specific heat-temperature formula in the glass transition region is derived. The material in the glass transition region is a mixture of rubber and glass, and this two-component (rubber and glass) system’s total specific heat is the product of the specific heat of the rubber and the percentage of rubber in the two-component system plus the product of the specific heat of the glass and the percentage of glass in the two-component system. Let b be the number of atoms in the main chain of the segment, then the proportion of rubber will be the b-th power of free volume fraction. This specific heat-temperature formula with polystyrene is tested. By substituting the obtained free volume expansion coefficient of the polystyrene into the specific heat-temperature formula, the resulting formula can accurately and quantitatively describe the specific heat-temperature relationship in the glass transition of polystyrene without fitting any parameters. In this paper, we also study the change of motion in the glass transition of polystyrene. According to the analysis, the glass transition process of polystyrene is a process in which the diffusion movement of the main chain atoms is activated or frozen, which is consistent with the conclusions of relevant research on amorphous alloys. When the main chain atom is used as the molar unit of measurement, the specific heat change in the glass transition of polystyrene is 1.61R (R is the gas constant), which is consistent with the law, i.e. “the specific heat change in the glass transition of the amorphous alloy is about 1.5R”. These consistent conclusions predict that the glass transitions of amorphous alloys and glass transitions of polystyrene have the same essence. Based on this idea, the specific heat temperature formulas of the amorphous alloy Pd40Ni10Cu30P20 and polystyrene are verified and prove to be consistent.
      Corresponding author: Jiang Wen-Long, guihuashu@126.com
    [1]

    金肖, 王利民 2017 物理学报 66 176406Google Scholar

    Jin X, Wang L M 2017 Acta Phys. Sin. 66 176406Google Scholar

    [2]

    Angell C A 1995 Science 267 1924Google Scholar

    [3]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Progress in Physics 33 177

    [4]

    Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902Google Scholar

    [5]

    Ke H B, Wen P, Zhao Z F, Wang W H 2012 Chin. Phys. Lett. 29 046402Google Scholar

    [6]

    Ke H B, Wen P, Wang W H 2012 AIP Adv. 2 041404Google Scholar

    [7]

    李健, 张烨, 张声春 1996 物理学报 45 1359Google Scholar

    Li J, Zhang Y, Zhang C S 1996 Acta Phys. Sin. 45 1359Google Scholar

    [8]

    闻平 2017 物理学报 66 176407Google Scholar

    Wen P 2017 Acta Phys. Sin. 66 176407Google Scholar

    [9]

    任景莉, 于利萍, 张李盈 2017 物理学报 66 176401Google Scholar

    Ren J L, Yu L P, Zhang L Y 2017 Acta Phys. Sin. 66 176401Google Scholar

    [10]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113Google Scholar

    [11]

    刘国栋, 张福强, 张丽娇, 王艳丽, 范留彬 2010 高分子学报 54 1065Google Scholar

    Liu G D, Zhang F Q, Zhang L J, Wang Y L, Fan L B 2010 Acta Polym. Sin. 54 1065Google Scholar

    [12]

    卢新亚, 姜炳政 1990 高分子学报 34 434

    Lu X Y, Jiang B Z 1990 Acta Polym. Sin. 34 434

    [13]

    何曼君, 陈维孝, 董西侠 1990 高分子物理(修订版)(上海: 复旦大学出版社) 第224−237页

    He M J, Chen W X, Dong X X 1990 Polymer Physics (Rev. ed.) (Shanghai: Fudan University Press) pp224−237 (in Chinese)

    [14]

    卓启疆 1987 聚合物自由体积 (成都: 成都科技大学出版社) 第138−144页

    Zhuo Q J 1987 Free Volume of Polymer (Chengdu: Chengdu University of Science And Technology Press) pp138−144 (in Chinese)

    [15]

    姜文龙 2019 玻璃化转变中高弹模量的定量研究 (北京: 中国科技论文在线) [2019-07-05]

    Jiang W L 2019 Numerical Study of Plateau Modulus in Glass Transition (Beijing: Sciencepaper Online) [2019-07-05] (in Chinese)

    [16]

    傅献彩, 沈文霞, 姚天扬, 侯文华 2005 物理化学(上册, 第五版) (北京: 高等教育出版社) 第396−397页

    Fu X C, Shen W X, Yao T Y, Hou W H 2005 Physical Chemistry (Vol. 1, 5th Ed.) (Beijing: Higher Education Press) pp396−397 (in Chinese)

    [17]

    于同隐, 何曼君, 卜海山, 胡家璁, 张炜 1986 高聚物的粘弹性 (上海: 上海科学技术出版社) 第38−44页

    Yu T Y, He M J, Bo H S, He J C, Zhang W 1986 Viscoelasticity of Polymers (Shanghai: Shanghai Science & Technology Publishers) pp38−44 (in Chinese)

    [18]

    Mark J E 1999 Polymer Data Handbook (Oxford: Oxford University Press) pp830−836

    [19]

    林晶晶, 左阳, 刘国栋 2014 河北工业大学学报 43 33

    Lin J J, Zuo Y, Liu G D 2014 Journal of Hebei University of Technology 43 33

    [20]

    李丽霞, 赵冬梅, 范留彬, 刘国栋 2011 河北大学学报(自然科学版) 31 617

    Li L X, Zhao D M, Fan L B, Liu G D 2011 Journal of Hebei University (Natural Science Edition) 31 617

  • 图 1  以不同${a_{\rm{f}}}$值拟合的不同分子量的聚苯乙烯的模量-温度曲线(文献值的原数据取自文献[17]) (a) ${a_{\rm{f}}}=0.00045$; (b) ${a_{\rm{f}}}=0.00048$; (c) ${a_{\rm{f}}}=0.00052$

    Figure 1.  Modulus-temperature curves of polystyrene at different molecular weight under different ${a_{\rm{f}}}$ (The source data of the reference values marked in panel are extracted from Ref. [17]): (a) ${a_{\rm{f}}}=0.00045$; (b) ${a_{\rm{f}}}=0.00048$; (c) ${a_{\rm{f}}}=$ 0.00052

    图 2  不同降温速度后升温的聚苯乙烯的DSC测试结果[19,20] (a) 0.1, 1, 10, 100 K/min; (b) 10, 20, 100 K/min

    Figure 2.  DSC experimental results of polystyrene recorded after cooling at different cooling rates[19,20]: (a) 0.1, 1, 10, 100 K/min; (b) 10, 20, 100 K/min.

    图 3  不同${a_{\rm{f}}}$值的聚苯乙烯的$C_{\rm{p}}^{\rm{N}}$的实验值和计算值(实验值的原数据取自文献[20]) (a) ${a_{\rm{f}}}$ = 0.00045; (b) ${a_{\rm{f}}}$ = 0.00052

    Figure 3.  Experimental and predicted $C_{\rm{p}}^{\rm{N}}$ of PS at different ${a_{\rm{f}}}$ (The source data of the experimental values marked in panel are extracted from Ref. [20]): (a) ${a_{\rm{f}}}$ = 0.00045; (b) af = 0.00052.

    图 4  Pd40Ni10Cu30P20的比热温度曲线(文献值的原数据取自文献[4]) (a) af = 0.00027, b = 11.57; (b) af = 0.00043, b = 7.20

    Figure 4.  Specific heat-temperature curves of Pd40Ni10Cu30P20 (The source data of the reference values marked in panel are extracted from Ref. [4]): (a) af = 0.00027, b = 11.57; (b) af = 0.00043, b = 7.20.

  • [1]

    金肖, 王利民 2017 物理学报 66 176406Google Scholar

    Jin X, Wang L M 2017 Acta Phys. Sin. 66 176406Google Scholar

    [2]

    Angell C A 1995 Science 267 1924Google Scholar

    [3]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Progress in Physics 33 177

    [4]

    Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902Google Scholar

    [5]

    Ke H B, Wen P, Zhao Z F, Wang W H 2012 Chin. Phys. Lett. 29 046402Google Scholar

    [6]

    Ke H B, Wen P, Wang W H 2012 AIP Adv. 2 041404Google Scholar

    [7]

    李健, 张烨, 张声春 1996 物理学报 45 1359Google Scholar

    Li J, Zhang Y, Zhang C S 1996 Acta Phys. Sin. 45 1359Google Scholar

    [8]

    闻平 2017 物理学报 66 176407Google Scholar

    Wen P 2017 Acta Phys. Sin. 66 176407Google Scholar

    [9]

    任景莉, 于利萍, 张李盈 2017 物理学报 66 176401Google Scholar

    Ren J L, Yu L P, Zhang L Y 2017 Acta Phys. Sin. 66 176401Google Scholar

    [10]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113Google Scholar

    [11]

    刘国栋, 张福强, 张丽娇, 王艳丽, 范留彬 2010 高分子学报 54 1065Google Scholar

    Liu G D, Zhang F Q, Zhang L J, Wang Y L, Fan L B 2010 Acta Polym. Sin. 54 1065Google Scholar

    [12]

    卢新亚, 姜炳政 1990 高分子学报 34 434

    Lu X Y, Jiang B Z 1990 Acta Polym. Sin. 34 434

    [13]

    何曼君, 陈维孝, 董西侠 1990 高分子物理(修订版)(上海: 复旦大学出版社) 第224−237页

    He M J, Chen W X, Dong X X 1990 Polymer Physics (Rev. ed.) (Shanghai: Fudan University Press) pp224−237 (in Chinese)

    [14]

    卓启疆 1987 聚合物自由体积 (成都: 成都科技大学出版社) 第138−144页

    Zhuo Q J 1987 Free Volume of Polymer (Chengdu: Chengdu University of Science And Technology Press) pp138−144 (in Chinese)

    [15]

    姜文龙 2019 玻璃化转变中高弹模量的定量研究 (北京: 中国科技论文在线) [2019-07-05]

    Jiang W L 2019 Numerical Study of Plateau Modulus in Glass Transition (Beijing: Sciencepaper Online) [2019-07-05] (in Chinese)

    [16]

    傅献彩, 沈文霞, 姚天扬, 侯文华 2005 物理化学(上册, 第五版) (北京: 高等教育出版社) 第396−397页

    Fu X C, Shen W X, Yao T Y, Hou W H 2005 Physical Chemistry (Vol. 1, 5th Ed.) (Beijing: Higher Education Press) pp396−397 (in Chinese)

    [17]

    于同隐, 何曼君, 卜海山, 胡家璁, 张炜 1986 高聚物的粘弹性 (上海: 上海科学技术出版社) 第38−44页

    Yu T Y, He M J, Bo H S, He J C, Zhang W 1986 Viscoelasticity of Polymers (Shanghai: Shanghai Science & Technology Publishers) pp38−44 (in Chinese)

    [18]

    Mark J E 1999 Polymer Data Handbook (Oxford: Oxford University Press) pp830−836

    [19]

    林晶晶, 左阳, 刘国栋 2014 河北工业大学学报 43 33

    Lin J J, Zuo Y, Liu G D 2014 Journal of Hebei University of Technology 43 33

    [20]

    李丽霞, 赵冬梅, 范留彬, 刘国栋 2011 河北大学学报(自然科学版) 31 617

    Li L X, Zhao D M, Fan L B, Liu G D 2011 Journal of Hebei University (Natural Science Edition) 31 617

  • [1] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [2] Zhang Jing-Qi, Hao Qi, Lyu Guo-Jian, Xiong Bi-Jin, Qiao Ji-Chao. Understanding stress relaxation behavior of amorphous polystyrene based on microstructural heterogeneity. Acta Physica Sinica, 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [3] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [4] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [5] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [6] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [7] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [8] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [9] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [10] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [11] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [12] Lin Sheng-Jun, Huang Yin, Xie Dong-Ri, Min Dao-Min, Wang Wei-Wang, Yang Liu-Qing, Li Sheng-Tao. Molecular relaxation and glass transition properties of epoxy resin at high temperature. Acta Physica Sinica, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [13] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [14] Zhang Li-Li, Zhang Jin-Lu, Jiang Jian-Guo, Zhou Heng-Wei, Huang Yi-Neng. Modeling the inter-molecular orientational correlation in orientational glassformers and the simulation analysis. Acta Physica Sinica, 2008, 57(9): 5817-5822. doi: 10.7498/aps.57.5817
    [15] Wang Hai-Long, Wang Xiu-Xi, Wang Yu, Liang Hai-Yi. Molecular dynamics simulation of deformation-induced crystallization mechanism in amorphous Ti3Al alloy. Acta Physica Sinica, 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [16] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [17] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [18] Yi Gui-Yun, Dong Peng, Wang Xiao-Dong, Liu Li-Xia, Chen Sheng-Li. Synthesis and characterization of three-dimensionally ordered macroporous polystyrene. Acta Physica Sinica, 2004, 53(10): 3311-3315. doi: 10.7498/aps.53.3311
    [19] Zhou Xiao-Feng, Tao Shu-Fen, Liu Zuo-Quan, Kan Jia-De, Li Hai-Yang. . Acta Physica Sinica, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [20] Wang Xiao-Qiang, Xie Er-Qing, Qian Bing-Zhong, He De-Yan, Zhu Zhi-Yong, Jin Yun-Fan. . Acta Physica Sinica, 2002, 51(5): 1094-1097. doi: 10.7498/aps.51.1094
Metrics
  • Abstract views:  7155
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2020
  • Accepted Date:  01 April 2020
  • Published Online:  20 June 2020

/

返回文章
返回