Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy

Fang Yu Wu Xing-Zhi Chen Yong-Qiang Yang Jun-Yi Song Ying-Lin

Citation:

Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy

Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin
PDF
HTML
Get Citation
  • Gallium nitride (GaN) is a key material in blue light-emitting devices and is recognized as one of the most important semiconductors after Si. Its outstanding thermal conductivity, high saturation velocity, and high breakdown electric field have enabled the use of GaN for high-power and high-frequency devices. Although lots of researches have been done on the optical and optoelectrical properties of GaN, the defect-related ultrafast dynamics of the photo-excitation and the relaxation mechanism are still completely unclear at present, especially when the photo-generated carrier concentration is close to the defect density in n-type GaN. The transient absorption spectroscopy has become a powerful spectroscopic method, and the advantages of this method are contact-free, highly sensitive to free carriers, and femtosecond time resolved. In this article, by employing optical pump and infrared probe spectroscopy, we investigate the ultrafast photo-generated carriers dynamics in representative high-purity n-type and Ge-doped GaN (GaN:Ge) crystal. The transient absorption response increased as probe wavelengths increased, and hole-related absorption was superior to electron-related absorption, especially at 1050 nm. The transient absorption kinetics in GaN:Ge appeared to be double exponential decay under two-photon excitation. By modelling the carrier population dynamics in energy levels, which contained both radiative and non-radiative defect states, the carrier dynamics and carrier capture coefficients in GaN: Ge can be interpreted and determined unambiguously. The faster component (30–60 ps) of absorption decay kinetics corresponded to the capturing process of holes by negatively charged acceptor CN. However, the capturing process was limited by the recombination of electron and trapped holes under higher excitation after the saturation of deep acceptors. As a result, the slower component decayed slower as the excitation fluence increased. Moreover, the experimental and theoretical results found that, the carrier lifetime in n-GaN can be modulated by controlling the defect density and carrier concentration under a moderate carrier injection, making GaN applicable in different fields such as LED and optical communication.
      Corresponding author: Fang Yu, yufang@usts.edu.cn
    [1]

    Nakamura S, Pearton S, Fasol G 2013 The Blue Laser Diode: the Complete Sstory (2nd Ed.) (Berlin: Springer-Verlag) pp3,4

    [2]

    Pearton S J, Ren F 2000 Adv. Mater. 12 1571Google Scholar

    [3]

    Xiong C, Pernice W, Ryu K K, Schuck C, Fong K Y, Palacios T, Tang H X 2011 Opt. Express 19 10462Google Scholar

    [4]

    Bruch A W, Xiong C, Leung B, Poot M, Han J, Tang H X 2015 Appl. Phys. Lett. 107 141113Google Scholar

    [5]

    Monteagudo-Lerma L, Naranjo F B, Valdueza-Felip S, Jiménez-Rodríguez M, Monroy E, Postigo P A, Corredera P, González-Herráez M 2016 Phys. Status Solidi A 213 1269Google Scholar

    [6]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar

    [7]

    Reshchikov M A, Morkoc H 2005 J. Appl. Phys. 97 061301Google Scholar

    [8]

    Chichibu S F, Uedono A, Kojima K, Ikeda H, Fujito K, Takashima S, Edo M, Ueno K, Ishibashi S 2018 J. Appl. Phys. 123 161413Google Scholar

    [9]

    Jarašiūnas K, Malinauskas T, Nargelas S, Gudelis V, Vaitkus J V, Soukhoveev V, Usikov A 2010 Phys. Status Solidi B 247 1703Google Scholar

    [10]

    Iwinska M, Takekawa N, Ivanov V Y, Amilusik M, Kruszewski P, Piotrzkowski R, Litwin-Staszewska E, Lucznik B, Fijalkowski M, Sochacki T, Teisseyre H, Murakami H, Bockowski M 2017 J. Cryst. Growth 480 102Google Scholar

    [11]

    Ueno K, Arakawa Y, Kobayashi A, Ohta J, Fujioka H 2017 Appl. Phys. Express 10 101002Google Scholar

    [12]

    Götz W, Johnson N, Chen C, Liu H, Kuo C, Imler W 1996 Appl. Phys. Lett. 68 3144Google Scholar

    [13]

    Götz W, Kern R S, Chen C H, Liu H, Steigerwald D A, Fletcher R M 1999 Mater. Sci. Eng. B 59 211Google Scholar

    [14]

    Nenstiel C, Bügler M, Callsen G, Nippert F, Kure T, Fritze S, Dadgar A, Witte H, Bläsing J, Krost A, Hoffmann A 2015 Phys. Status SolidiRRL 9 716Google Scholar

    [15]

    Ajay A, Lim C B, Browne D A, Polaczyński J, Bellet-Amalric E, Bleuse J, den Hertog M I, Monroy E 2017 Nanotechnology 28 405204Google Scholar

    [16]

    Zhong Y, Wong K S, Zhang W, Look D C 2006 Appl. Phys. Lett. 89 022108Google Scholar

    [17]

    Williams K W, Monahan N R, Koleske D D, Crawford M H, Zhu X Y 2016 Appl. Phys. Lett. 108 141105Google Scholar

    [18]

    Ščajev P, Jarašiūnas K, Okur S, Özgür Ü, Morkoç H 2012 J. Appl. Phys. 111 023702Google Scholar

    [19]

    Ohashi Y, Katayama K, Shen Q, Toyoda T 2009 J. Appl. Phys. 106 063515Google Scholar

    [20]

    Upadhya P C, Martinez J A, Li Q, Wang G T, Swartzentruber B S, Taylor A J, Prasankumar R P 2015 Appl. Phys. Lett. 106 263103Google Scholar

    [21]

    Chen Y T, Yang C Y, Chen P C, Sheu J K, Lin K H 2017 Sci. Rep. 7 5788Google Scholar

    [22]

    Dugar P, Kumar M, T. C S K, Aggarwal N, Gupta G 2015 RSC Adv. 5 83969Google Scholar

    [23]

    Marcinkevičius S, Uždavinys T K, Foronda H M, Cohen D A, Weisbuch C, Speck J S 2016 Phys. Rev. B 94 235205Google Scholar

    [24]

    Fang Y, Yang J, Yong Y, Wu X, Xiao Z, Zhou F, Song Y 2016 J. Phys. D: Appl. Phys. 49 045105Google Scholar

    [25]

    方宇 2016 博士学位论文 (苏州: 苏州大学)

    Fang Y 2016 Ph. D. Dissertation (Suzhou: Soochow University) (in Chinese)

    [26]

    聂媱, 王友云, 吴雪琴, 方宇 2019 激光与光电子学进展 56 063201Google Scholar

    Nie Y, Wang Y, Wu X, Fang Y 2019 Laser & Optoelectronics Progress 56 063201Google Scholar

    [27]

    Zhao W, Palffy-Muhoray P 1993 Appl. Phys. Lett. 63 1613Google Scholar

    [28]

    Gu H, Ren G, Zhou T, Tian F, Xu Y, Zhang Y, Wang M, Zhang Z, Cai D, Wang J 2016 J. Alloys Compd. 674 218Google Scholar

    [29]

    Zhang Y M, Wang J F, Cai D M, Ren G Q, Xu Y, Wang M Y, Hu X J, Xu K 2020 Chin. Phys. B 29 026104Google Scholar

    [30]

    Kioupakis E, Rinke P, Schleife A, Bechstedt F, van de Walle C G 2010 Phys. Rev. B 81 241201Google Scholar

    [31]

    Ščajev P, Jarašiūnas K, Özgür Ü, Morkoç H, Leach J, Paskova T 2012 Appl. Phys. Lett. 100 022112Google Scholar

    [32]

    Ridley B K 2013 Quantum Processes in Semiconductors (5th Ed.) (Oxford: Oxford University Press) pp194–195

    [33]

    Lyons J, Janotti A, van de Walle C G 2010 Appl. Phys. Lett. 97 152108Google Scholar

    [34]

    Demchenko D O, Diallo I C, Reshchikov M A 2013 Phys. Rev. Lett. 110 087404Google Scholar

    [35]

    Zhang H S, Shi L, Yang X B, Zhao Y J, Xu K, Wang L W 2017 Adv. Opt. Mater. 5 1700404Google Scholar

    [36]

    Christenson S G, Xie W, Sun Y, Zhang S 2015 J. Appl. Phys. 118 135708Google Scholar

    [37]

    Wu S, Yang X, Zhang H, Shi L, Zhang Q, Shang Q, Qi Z, Xu Y, Zhang J, Tang N 2018 Phys. Rev. Lett. 121 145505Google Scholar

    [38]

    Fang Y, Zhou F, Yang J, Wu X, Xiao Z, Li Z, Song Y 2015 Appl. Phys. Lett. 106 131903Google Scholar

    [39]

    Reshchikov M A, Albarakati N M, Monavarian M, Avrutin V, Morkoç H 2018 J. Appl. Phys. 123 161520Google Scholar

    [40]

    Reshchikov M A, Korotkov R Y 2001 Phys. Rev. B 64 115205Google Scholar

    [41]

    Dreyer C E, Alkauskas A, Lyons J L, Speck J S, Van de Walle C G 2016 Appl. Phys. Lett. 108 141101Google Scholar

  • 图 1  (a) GaN: Ge晶体的线性吸收谱, 内插图为2PE下的发光图片; (b)不同脉冲能量激发下GaN: Ge的开孔Z扫描曲线, 实线为理论拟合曲线

    Figure 1.  (a) Linear absorption spectrum of GaN: Ge crystal. The inset shows the two-photon excited photoluminescence photograph of sample; (b) open-aperture Z-scan data of GaN: Ge at several input pulse energies, the solid lines are theoretical fitting curves.

    图 2  (a) 2PE下GaN: Ge的超快瞬态吸收光谱, 激发能流为0.8 mJ/cm2; (b) 1PE下GaN: Ge的超快瞬态吸收光谱, 激发能流为0.5 mJ/cm2. 内插图均为可见光探测下的结果

    Figure 2.  (a) Ultrafast TAS in GaN: Ge using 2PE under the excitation fluence of 0.8 mJ/cm2; (b) ultrafast TAS in GaN: Ge using 1PE under the excitation fluence of 0.5 mJ/cm2. The insets show the TAS probed at visible wavelengths.

    图 3  (a)不同激发能流下GaN: Ge的瞬态吸收动力学, 探测波长为1050 nm, 实线为双指数拟合曲线, 内插图为较短时间尺度下(7 ps)的数据; (b)不同激发能流下瞬态吸收衰减曲线拟合得到的快速和慢速弛豫寿命(分别为τ1和τ2)

    Figure 3.  (a) The transient absorption kinetics in GaN: Ge under various excitation fluence probed at 1050 nm, the solid lines denote the theoretical curves using bi-exponential decay, and the inset illustrates the transient absorption kinetics in a 7 ps time window; (b) the fast and slow relaxation time (τ1 and τ2, respectively) extracted from transient absorption kinetics under various excitation fluence.

    图 4  用于模拟2PE下GaN载流子动力学的能带示意图. 直虚线箭头表示无辐射跃迁, 向下曲线箭头表示通过辐射复合产生的发光

    Figure 4.  Energy band diagram used to model the carrier dynamics of GaN under 2PE. Straight broken arrows denote non-radiative transitions and curvy downwards arrows denote emissions via radiative recombination.

    图 5  利用载流子复合模型拟合和模拟不同激发能流下GaN: Ge的超快载流子弛豫动力学 (a)实验结果拟合; (b)更大的激发能流和1PE情况

    Figure 5.  Fitting and simulation of ultrafast carrier relaxation dynamics in GaN: Ge using carrier recombination model: (a) The fitting of experimental results; (b) under higher excitation fluence and 1PE.

    图 6  1PE(0.8 mJ/cm2)和2PE(1.6 mJ/cm2)下GaN:Ge在通讯波段1310 nm下的超快瞬态吸收动力学

    Figure 6.  Ultrafast transient absorption kinetics in GaN:Ge probed at communication band 1310 nm under both 1PE (0.8 mJ/cm2) and 2PE (1.6 mJ/cm2).

    表 1  用于模拟实验结果使用和确定的参数. NiτnRad的数值为预估值, BRad数值来自参考文献[18], Cni, CpiS数值为拟合实验数据确定的参数

    Table 1.  Parameters used/determined to model the experimental results. The values of Ni and τnRad were estimated. The value of BRad was extracted from Ref. [18]. The values of Cni, Cpi and S were determined by fitting the data.

    参数数值
    Ni1 × 1016 cm–3
    Cni(2.7 ± 0.8) × 10–9 cm3·s–1
    Cpi(5.9 ± 0.7) × 10–7 cm3·s–1
    τnRad40 ns
    BRad3 × 10–11 cm3·s–1
    S7 ± 1
    DownLoad: CSV
  • [1]

    Nakamura S, Pearton S, Fasol G 2013 The Blue Laser Diode: the Complete Sstory (2nd Ed.) (Berlin: Springer-Verlag) pp3,4

    [2]

    Pearton S J, Ren F 2000 Adv. Mater. 12 1571Google Scholar

    [3]

    Xiong C, Pernice W, Ryu K K, Schuck C, Fong K Y, Palacios T, Tang H X 2011 Opt. Express 19 10462Google Scholar

    [4]

    Bruch A W, Xiong C, Leung B, Poot M, Han J, Tang H X 2015 Appl. Phys. Lett. 107 141113Google Scholar

    [5]

    Monteagudo-Lerma L, Naranjo F B, Valdueza-Felip S, Jiménez-Rodríguez M, Monroy E, Postigo P A, Corredera P, González-Herráez M 2016 Phys. Status Solidi A 213 1269Google Scholar

    [6]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar

    [7]

    Reshchikov M A, Morkoc H 2005 J. Appl. Phys. 97 061301Google Scholar

    [8]

    Chichibu S F, Uedono A, Kojima K, Ikeda H, Fujito K, Takashima S, Edo M, Ueno K, Ishibashi S 2018 J. Appl. Phys. 123 161413Google Scholar

    [9]

    Jarašiūnas K, Malinauskas T, Nargelas S, Gudelis V, Vaitkus J V, Soukhoveev V, Usikov A 2010 Phys. Status Solidi B 247 1703Google Scholar

    [10]

    Iwinska M, Takekawa N, Ivanov V Y, Amilusik M, Kruszewski P, Piotrzkowski R, Litwin-Staszewska E, Lucznik B, Fijalkowski M, Sochacki T, Teisseyre H, Murakami H, Bockowski M 2017 J. Cryst. Growth 480 102Google Scholar

    [11]

    Ueno K, Arakawa Y, Kobayashi A, Ohta J, Fujioka H 2017 Appl. Phys. Express 10 101002Google Scholar

    [12]

    Götz W, Johnson N, Chen C, Liu H, Kuo C, Imler W 1996 Appl. Phys. Lett. 68 3144Google Scholar

    [13]

    Götz W, Kern R S, Chen C H, Liu H, Steigerwald D A, Fletcher R M 1999 Mater. Sci. Eng. B 59 211Google Scholar

    [14]

    Nenstiel C, Bügler M, Callsen G, Nippert F, Kure T, Fritze S, Dadgar A, Witte H, Bläsing J, Krost A, Hoffmann A 2015 Phys. Status SolidiRRL 9 716Google Scholar

    [15]

    Ajay A, Lim C B, Browne D A, Polaczyński J, Bellet-Amalric E, Bleuse J, den Hertog M I, Monroy E 2017 Nanotechnology 28 405204Google Scholar

    [16]

    Zhong Y, Wong K S, Zhang W, Look D C 2006 Appl. Phys. Lett. 89 022108Google Scholar

    [17]

    Williams K W, Monahan N R, Koleske D D, Crawford M H, Zhu X Y 2016 Appl. Phys. Lett. 108 141105Google Scholar

    [18]

    Ščajev P, Jarašiūnas K, Okur S, Özgür Ü, Morkoç H 2012 J. Appl. Phys. 111 023702Google Scholar

    [19]

    Ohashi Y, Katayama K, Shen Q, Toyoda T 2009 J. Appl. Phys. 106 063515Google Scholar

    [20]

    Upadhya P C, Martinez J A, Li Q, Wang G T, Swartzentruber B S, Taylor A J, Prasankumar R P 2015 Appl. Phys. Lett. 106 263103Google Scholar

    [21]

    Chen Y T, Yang C Y, Chen P C, Sheu J K, Lin K H 2017 Sci. Rep. 7 5788Google Scholar

    [22]

    Dugar P, Kumar M, T. C S K, Aggarwal N, Gupta G 2015 RSC Adv. 5 83969Google Scholar

    [23]

    Marcinkevičius S, Uždavinys T K, Foronda H M, Cohen D A, Weisbuch C, Speck J S 2016 Phys. Rev. B 94 235205Google Scholar

    [24]

    Fang Y, Yang J, Yong Y, Wu X, Xiao Z, Zhou F, Song Y 2016 J. Phys. D: Appl. Phys. 49 045105Google Scholar

    [25]

    方宇 2016 博士学位论文 (苏州: 苏州大学)

    Fang Y 2016 Ph. D. Dissertation (Suzhou: Soochow University) (in Chinese)

    [26]

    聂媱, 王友云, 吴雪琴, 方宇 2019 激光与光电子学进展 56 063201Google Scholar

    Nie Y, Wang Y, Wu X, Fang Y 2019 Laser & Optoelectronics Progress 56 063201Google Scholar

    [27]

    Zhao W, Palffy-Muhoray P 1993 Appl. Phys. Lett. 63 1613Google Scholar

    [28]

    Gu H, Ren G, Zhou T, Tian F, Xu Y, Zhang Y, Wang M, Zhang Z, Cai D, Wang J 2016 J. Alloys Compd. 674 218Google Scholar

    [29]

    Zhang Y M, Wang J F, Cai D M, Ren G Q, Xu Y, Wang M Y, Hu X J, Xu K 2020 Chin. Phys. B 29 026104Google Scholar

    [30]

    Kioupakis E, Rinke P, Schleife A, Bechstedt F, van de Walle C G 2010 Phys. Rev. B 81 241201Google Scholar

    [31]

    Ščajev P, Jarašiūnas K, Özgür Ü, Morkoç H, Leach J, Paskova T 2012 Appl. Phys. Lett. 100 022112Google Scholar

    [32]

    Ridley B K 2013 Quantum Processes in Semiconductors (5th Ed.) (Oxford: Oxford University Press) pp194–195

    [33]

    Lyons J, Janotti A, van de Walle C G 2010 Appl. Phys. Lett. 97 152108Google Scholar

    [34]

    Demchenko D O, Diallo I C, Reshchikov M A 2013 Phys. Rev. Lett. 110 087404Google Scholar

    [35]

    Zhang H S, Shi L, Yang X B, Zhao Y J, Xu K, Wang L W 2017 Adv. Opt. Mater. 5 1700404Google Scholar

    [36]

    Christenson S G, Xie W, Sun Y, Zhang S 2015 J. Appl. Phys. 118 135708Google Scholar

    [37]

    Wu S, Yang X, Zhang H, Shi L, Zhang Q, Shang Q, Qi Z, Xu Y, Zhang J, Tang N 2018 Phys. Rev. Lett. 121 145505Google Scholar

    [38]

    Fang Y, Zhou F, Yang J, Wu X, Xiao Z, Li Z, Song Y 2015 Appl. Phys. Lett. 106 131903Google Scholar

    [39]

    Reshchikov M A, Albarakati N M, Monavarian M, Avrutin V, Morkoç H 2018 J. Appl. Phys. 123 161520Google Scholar

    [40]

    Reshchikov M A, Korotkov R Y 2001 Phys. Rev. B 64 115205Google Scholar

    [41]

    Dreyer C E, Alkauskas A, Lyons J L, Speck J S, Van de Walle C G 2016 Appl. Phys. Lett. 108 141101Google Scholar

  • [1] Li Gao-Fang, Liao Yu-Ao, Cui Hao-Yang, Huang Chen-Guang, Wang Chen, Ma Guo-Hong, Zhou Wei, Huang Zhi-Ming, Chu Jun-Hao. Photocarrier dynamics in Cd0.96Zn0.04Te measured by optical-pump terahertz-probe spectroscopy. Acta Physica Sinica, 2023, 72(3): 037201. doi: 10.7498/aps.72.20221896
    [2] Zhao Ke, Song Jun, Zhang Han. Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives. Acta Physica Sinica, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] Wu Xiang-Lian, Zhao Ke, Jia Hai-Hong, Wang Fu-Qing. Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center. Acta Physica Sinica, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [4] Zhou Nan, Zheng Qiang, Hu Bei-Chen, Shi De-Quan, Miao Chun-Yu, Ma Chun-Yu, Liang Hong-Wei, Hao Sheng-Zhi, Zhang Qing-Yu. Effects of controlled surface states on the photoluminescence emission of GaN film. Acta Physica Sinica, 2014, 63(13): 137802. doi: 10.7498/aps.63.137802
    [5] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [6] Jia Ke-Ning, Liu Zhong-Bo, Liang Ying, Tong Dian-Min, Fan Xi-Jun. Effect of Doppler broadening on VIC-dependent two-photon absorption in Y-type four-level system. Acta Physica Sinica, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [7] Chen Jun, Fan Guang-Han, Zhang Yun-Yan. The investigation of performance improvement of GaN-based dual-wavelength light-emitting diodes with various thickness of quantum barriers. Acta Physica Sinica, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [8] Zhang Yun-Yan, Fan Guan-Han. Theoretical study of GaN interval layers and quantum well barrier layers of different doping types in dual-wavelength LED. Acta Physica Sinica, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [9] Zhang Yun-Yan, Fan Guang-Han, Zhang Yong, Zheng Shu-Wen. Effect of spectrum-control in dual-wavelength light-emitting diode by doped GaN interval layer. Acta Physica Sinica, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [10] Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang. Two-photon absorption coefficient spectra of indirect transitions in silicon. Acta Physica Sinica, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [11] Deng Yi, Zhao De-Gang, Wu Liang-Liang, Liu Zong-Shun, Zhu Jian-Jun, Jiang De-Sheng, Zhang Shu-Ming, Liang Jun-Wu. Effects of AlGaN layer parameter on ultraviolet response of n+-GaN/i-AlxGa1-xN/n+-GaN structure ultraviolet-infrared photodetector. Acta Physica Sinica, 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [12] Liu Wen-Bao, Zhao De-Gang, Jiang De-Sheng, Liu Zong-Shun, Zhu Jian-Jun, Zhang Shu-Ming, Yang Hui. Abnormal photoabsorption in high resistance GaN epilayer. Acta Physica Sinica, 2010, 59(11): 8048-8051. doi: 10.7498/aps.59.8048
    [13] Sun Yuan-Hong, Wang Chuan-Kui. Theoretical study on two-photon absorption properties of novel multi-branched compounds. Acta Physica Sinica, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [14] Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Effect of time-dependent ionization on properties of the ultrashort pulse propagation and optical power limiting in a two-photon absorption molecular medium. Acta Physica Sinica, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [15] Zuo Fang-Yuan, Wang Yang, Wu Yi-Qun, Lai Tian-Shu. Study of ultrafast carrier dynamics in amorphous Ge2Sb2Te5 film by femtosecond-resolved reflectivity spectroscopy. Acta Physica Sinica, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [16] Cui Hao-Yang, Li Zhi-Feng, Li Ya-Jun, Liu Zhao-Lin, Chen Xiao-Shuang, Lu Wei, Ye Zhen-Hua, Hu Xiao-Ning, Wang Chong. Franz-Keldysh effect in two-photon absorption. Acta Physica Sinica, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [17] Liu Shi-Feng, Qin Guo-Gang, You Li-Ping, Zhang Ji-Cai, Fu Zhu-Xi, Dai Lun. Synthesis of GaN nanowires and nano-pyramids in a two-hot-boat chemical vapor deposition system via an In-doping technique. Acta Physica Sinica, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [18] Sun Xiao-Wei, Chu Yan-Dong, Liu Zi-Jiang, Liu Yu-Xiao, Wang Cheng-Wei, Liu Wei-Min. Molecular dynamics study on the structural and thermodynamic properties of the zinc-blende phase of GaN at high pressures and high temperatures. Acta Physica Sinica, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [19] He Guo-Hua, Zhang Jun-Xiang, Ye Li-Hua, Cui Yi-Ping, Li Zhen-Hua, Lai Jian-Cheng, He An-Zhi. Broadband two-photon absorption and optical power limiting properties of a novel organic compound. Acta Physica Sinica, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [20] Zhang Yan-Liang, Jiang Li, Niu Yue-Ping, Sun Zhen-Rong, Ding Liang-En, Wang Zu-Geng. Interference enhancement of two-photon absorption caused by a pair of coherent superposition levels in Na. Acta Physica Sinica, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
Metrics
  • Abstract views:  12269
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2020
  • Accepted Date:  08 May 2020
  • Available Online:  25 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回