-
Rare earth doping is an important method to improve the properties of optoelectronic functional materials. Combining rare earth doping ferroelectric materials and rare earth photoluminescence can create new functional properties of ferroelectric materials. For example, choosing and using an appropriate rare earth element to be doped into a bismuth titanate ferroelectric material, the bismuth titanate will exhibit good photoluminescent properties as well as ferroelectric properties. Recently, photoluminescence properties originating from rare earth ions in oxide ferroelectric materials have attracted much attention for possible integrated photoluminescent ferroelectric device applications. In this paper, we briefly review the research status and progress of photoluminescence in rare earth photoluminescent ferroelectric materials, and we place the emphasis on our own research work in photoluminescent ferroelectric thin films such as (Bi,Eu)4Ti3O12, (Bi,Er)4Ti3O12, and codoped bismuth titanate thin films, and nanocomposite (Bi,Eu)4Ti3O12 ferroelectric thin films. Our results show that the rare earth doped bismuth titanate ferroelectric thin films exhibit good photoluminescent and ferroelectric properties due to unique compositions and layered perovskite structure, that the Eu3+ fluorescent structure probe can provide a new path for further studying the relationship between structure and property of Eu-doped ferroelectric thin films, that the rare earth photoluminescence can be used to examine the existence of morphotropic phase boundary in certain ferroelectric thin films such as Pr-doped x(K1/2Bi1/2)TiO3-(1-x)(Na1/2Bi1/2)TiO3 thin films, and nanocomposite materials of ZnO nanomaterials, and that Au nanoparticles, Ag nanoparticles with Eu-doped bismuth titanate exhibit obviously enhanced photoluminescent properties.
-
Keywords:
- ferroelectric thin films /
- rare earth doping /
- photoluminescence
[1] Scott J F 2007 Science 315 954Google Scholar
[2] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K 2013 Nature 503 509Google Scholar
[3] Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R, Li R W 2017 Chin. Phys. B 26 067702Google Scholar
[4] Han D L, Uda T, Nose Y, Okajima T, Murata H, Tanaka I, Shinoda K 2012 Adv. Mater. 24 2051Google Scholar
[5] Geskus D, Aravazhi S, Garcia-Blanco S M, Pollnau M 2012 Adv. Mater. 24 OP19Google Scholar
[6] Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nat. Commun. 5 8206Google Scholar
[7] Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682Google Scholar
[8] Maiwa H, Iizawa N, Togawa D, Hayashi T, Sakamoto W, Yamada M, Hirano S 2003 Appl. Phys. Lett. 82 1760Google Scholar
[9] Zhang S T, Zhang X J, Cheng H W, Chen Y F, Liu Z G, Ming N B, Hu X B, Wang J Y 2003 Appl. Phys. Lett. 83 4378Google Scholar
[10] Kan D, Anbusathaiah V, Takeuchi I 2011 Adv. Mater. 23 1765Google Scholar
[11] Lee Y H, Wu J M, Lai C H 2006 Appl. Phys. Lett. 88 042903Google Scholar
[12] Freeman C L, Dawson J A, Harding J H, Ben L B, Sinclair D C 2013 Adv. Funct. Mater. 23 491Google Scholar
[13] Tsang M K, Bai G X, Hao J H 2015 Chem. Soc. Rev. 44 1585Google Scholar
[14] Zhang Y, Hao J H 2013 J. Appl. Phys. 113 184112Google Scholar
[15] Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar
[16] Makovec D, Ule N, Drofenik M 2001 J. Am. Ceram. Soc. 84 1273Google Scholar
[17] de Camargo A S S, Botero E R, Andreeta E R M, Garcia D, Eiras J A, Nunes L A O 2005 Appl. Phys. Lett. 86 241112Google Scholar
[18] Zheng J J, Lu Y L, Chen X S, Cronin-Golomb M, Zhao J 1999 Appl. Phys. Lett. 75 3470Google Scholar
[19] Block B A, Wessels B W 1994 Appl. Phys. Lett. 65 25Google Scholar
[20] Wang X S, Xu C N, Yamada H, Nishikubo K, Zheng X G 2005 Adv. Mater. 17 1254Google Scholar
[21] Zhang P Z, Shen M R, Fang L, Zheng F G, Wu X L, Shen J C, Chen H T 2008 Appl. Phys. Lett. 92 222908Google Scholar
[22] Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2012 J. Appl. Phys. 111 104111Google Scholar
[23] Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2013 J. Am. Ceram. Soc. 96 184Google Scholar
[24] Ruan, K B, Chen X M, Liang T, Wu G H, Bao D H 2008 J. Appl. Phys. 103 074101Google Scholar
[25] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Appl. Phys. 109 043106Google Scholar
[26] Ruan K B, Chen X M, Liang T, Bao D H 2008 J. Appl. Phys. 103 086104Google Scholar
[27] Du X R, Huang W H, Thatikonda S K, Qin N, Bao D H 2019 J. Mater. Sci.- Mater. Electron. 30 13158Google Scholar
[28] Pradhan A K, Zhang K, Mohanty S, Dadson J, Hunter D, Loutts G B, Roy U N, Cui Y, Burger A, Wilkerson A L 2005 J. Appl. Phys. 97 023513Google Scholar
[29] Driesen K, Tikhomirov V K, Gorlier-Wairand C 2007 J. Appl. Phys. 102 024312Google Scholar
[30] Gao F, Wu G H, Zhou H, Bao D H 2009 J. Appl. Phys. 106 126104Google Scholar
[31] Ding G J, Gao F, Wu G H, Bao D H 2011 J. Appl. Phys. 109 123101Google Scholar
[32] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Electrochem. Soc. 158 G128Google Scholar
[33] Zhou H, Wu G H, Qin N, Bao D H 2012 J. Am. Ceram. Soc. 95 483Google Scholar
[34] Huang W H, He S, Hao A Z, Qin N, Ismail M, Wu J, Bao D H 2018 J. Eur. Ceram. Soc. 38 2328Google Scholar
[35] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春 2015 物理学报 64 207802Google Scholar
Wu X P, Liu J Y, Lin L M, Zheng W F, Qu Y, Lai F C 2015 Acta Phys. Sin. 64 207802Google Scholar
[36] Chong M K, Abiyasa A P, Pita K, Yu S F 2008 Appl. Phys. Lett. 93 151105Google Scholar
[37] Chong M K, Vu Q V, Pita K 2010 Electrochem. Solid-State Lett. 13 J50Google Scholar
[38] Voora V M, Hofmann T, Brandt M, Lorenz M, Ashkenov N, Grundmann M, Schubert M 2009 Appl. Phys. Lett. 95 082902Google Scholar
[39] Wu J, Wang J 2010 J. Appl. Phys. 108 034102Google Scholar
[40] Zhou H, Chen X M, Wu G H, Gao F, Qin N, Bao D H 2010 J. Am. Chem. Soc. 132 1790Google Scholar
[41] Zhou X Y, Wu G H, Zhou H, Qin N, Bao D H 2013 Ceram. Int. 39 S507Google Scholar
[42] Liu X, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. Express 4 032103Google Scholar
[43] Su L, Qin N, Xie W, Fu J H, Bao D H 2014 J. Appl. Phys. 116 034101Google Scholar
[44] Su L, Qin N, Sa T L, Bao D H 2013 Opt. Express 21 29425Google Scholar
-
图 8 Pr掺杂x(K1/2Bi1/2)TiO3-(1-x)(Na1/2Bi1/2)TiO3薄膜的(a)发射光谱和(b)发光强度随Pr掺杂量的变化[33]
Figure 8. (a) Emission spectra excited at 350 nm UV radiation, and (b) 611 nm red emission intensity as a function of KBT content for Pr3+-doped x(K1/2Bi1/2)TiO3-(1-x) (Na1/2Bi1/2)TiO3 thin films[33]. The inset of (b) shows a photoluminescence photograph of the thin film (x = 0.15).
-
[1] Scott J F 2007 Science 315 954Google Scholar
[2] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K 2013 Nature 503 509Google Scholar
[3] Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R, Li R W 2017 Chin. Phys. B 26 067702Google Scholar
[4] Han D L, Uda T, Nose Y, Okajima T, Murata H, Tanaka I, Shinoda K 2012 Adv. Mater. 24 2051Google Scholar
[5] Geskus D, Aravazhi S, Garcia-Blanco S M, Pollnau M 2012 Adv. Mater. 24 OP19Google Scholar
[6] Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nat. Commun. 5 8206Google Scholar
[7] Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682Google Scholar
[8] Maiwa H, Iizawa N, Togawa D, Hayashi T, Sakamoto W, Yamada M, Hirano S 2003 Appl. Phys. Lett. 82 1760Google Scholar
[9] Zhang S T, Zhang X J, Cheng H W, Chen Y F, Liu Z G, Ming N B, Hu X B, Wang J Y 2003 Appl. Phys. Lett. 83 4378Google Scholar
[10] Kan D, Anbusathaiah V, Takeuchi I 2011 Adv. Mater. 23 1765Google Scholar
[11] Lee Y H, Wu J M, Lai C H 2006 Appl. Phys. Lett. 88 042903Google Scholar
[12] Freeman C L, Dawson J A, Harding J H, Ben L B, Sinclair D C 2013 Adv. Funct. Mater. 23 491Google Scholar
[13] Tsang M K, Bai G X, Hao J H 2015 Chem. Soc. Rev. 44 1585Google Scholar
[14] Zhang Y, Hao J H 2013 J. Appl. Phys. 113 184112Google Scholar
[15] Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar
[16] Makovec D, Ule N, Drofenik M 2001 J. Am. Ceram. Soc. 84 1273Google Scholar
[17] de Camargo A S S, Botero E R, Andreeta E R M, Garcia D, Eiras J A, Nunes L A O 2005 Appl. Phys. Lett. 86 241112Google Scholar
[18] Zheng J J, Lu Y L, Chen X S, Cronin-Golomb M, Zhao J 1999 Appl. Phys. Lett. 75 3470Google Scholar
[19] Block B A, Wessels B W 1994 Appl. Phys. Lett. 65 25Google Scholar
[20] Wang X S, Xu C N, Yamada H, Nishikubo K, Zheng X G 2005 Adv. Mater. 17 1254Google Scholar
[21] Zhang P Z, Shen M R, Fang L, Zheng F G, Wu X L, Shen J C, Chen H T 2008 Appl. Phys. Lett. 92 222908Google Scholar
[22] Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2012 J. Appl. Phys. 111 104111Google Scholar
[23] Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2013 J. Am. Ceram. Soc. 96 184Google Scholar
[24] Ruan, K B, Chen X M, Liang T, Wu G H, Bao D H 2008 J. Appl. Phys. 103 074101Google Scholar
[25] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Appl. Phys. 109 043106Google Scholar
[26] Ruan K B, Chen X M, Liang T, Bao D H 2008 J. Appl. Phys. 103 086104Google Scholar
[27] Du X R, Huang W H, Thatikonda S K, Qin N, Bao D H 2019 J. Mater. Sci.- Mater. Electron. 30 13158Google Scholar
[28] Pradhan A K, Zhang K, Mohanty S, Dadson J, Hunter D, Loutts G B, Roy U N, Cui Y, Burger A, Wilkerson A L 2005 J. Appl. Phys. 97 023513Google Scholar
[29] Driesen K, Tikhomirov V K, Gorlier-Wairand C 2007 J. Appl. Phys. 102 024312Google Scholar
[30] Gao F, Wu G H, Zhou H, Bao D H 2009 J. Appl. Phys. 106 126104Google Scholar
[31] Ding G J, Gao F, Wu G H, Bao D H 2011 J. Appl. Phys. 109 123101Google Scholar
[32] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Electrochem. Soc. 158 G128Google Scholar
[33] Zhou H, Wu G H, Qin N, Bao D H 2012 J. Am. Ceram. Soc. 95 483Google Scholar
[34] Huang W H, He S, Hao A Z, Qin N, Ismail M, Wu J, Bao D H 2018 J. Eur. Ceram. Soc. 38 2328Google Scholar
[35] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春 2015 物理学报 64 207802Google Scholar
Wu X P, Liu J Y, Lin L M, Zheng W F, Qu Y, Lai F C 2015 Acta Phys. Sin. 64 207802Google Scholar
[36] Chong M K, Abiyasa A P, Pita K, Yu S F 2008 Appl. Phys. Lett. 93 151105Google Scholar
[37] Chong M K, Vu Q V, Pita K 2010 Electrochem. Solid-State Lett. 13 J50Google Scholar
[38] Voora V M, Hofmann T, Brandt M, Lorenz M, Ashkenov N, Grundmann M, Schubert M 2009 Appl. Phys. Lett. 95 082902Google Scholar
[39] Wu J, Wang J 2010 J. Appl. Phys. 108 034102Google Scholar
[40] Zhou H, Chen X M, Wu G H, Gao F, Qin N, Bao D H 2010 J. Am. Chem. Soc. 132 1790Google Scholar
[41] Zhou X Y, Wu G H, Zhou H, Qin N, Bao D H 2013 Ceram. Int. 39 S507Google Scholar
[42] Liu X, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. Express 4 032103Google Scholar
[43] Su L, Qin N, Xie W, Fu J H, Bao D H 2014 J. Appl. Phys. 116 034101Google Scholar
[44] Su L, Qin N, Sa T L, Bao D H 2013 Opt. Express 21 29425Google Scholar
Catalog
Metrics
- Abstract views: 10123
- PDF Downloads: 361
- Cited By: 0