Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular junction stretching and interface recognition: Decode the mystery of high/low conductance switching in stretching process of 4, 4′-bipyridine molecular junction

Suo Yu-Qing Liu Ran Sun Feng Niu Le-Le Wang Shuang-Shuang Liu Lin Li Zong-Liang

Citation:

Molecular junction stretching and interface recognition: Decode the mystery of high/low conductance switching in stretching process of 4, 4′-bipyridine molecular junction

Suo Yu-Qing, Liu Ran, Sun Feng, Niu Le-Le, Wang Shuang-Shuang, Liu Lin, Li Zong-Liang
PDF
HTML
Get Citation
  • The high/low conductance switching in stretching process of 4,4′-bipyridine molecular junction is a distinctive phenomenon in molecular electronics, which is still a mystery and has been unsolved for more than one decade. Based on the techniques and processes of experimental measurement, the ab initio-based adiabatic molecule-junction-stretch simulation (AMJSS) method is developed, by which the stretching processes of 4,4′-bipyridine molecular junctions are calculated. The conductance traces of the molecular systems in the stretching processes are studied and the mystery of high/low conductance switching in the stretching processes of 4,4′-bipyridine molecular junction is decoded by using the one-dimensional transmission combined with the three-dimensional correction approximation (OTCTCA) method. The numerical results show that, in the stretching process of 4,4′-bipyridine molecular junction, the upper terminal nitrogen atom in the pyridine ring is easy to vertically adsorb on the second gold layer of the probe electrode. At the same time, the molecule produces unique lateral-pushing force to push the tip atoms of the probe electrode aside. Thus, the high conductance plateau arises. With the molecular junction further stretched, the upper terminal nitrogen atom of the molecule shifts from the second gold layer to the tip gold atom of the probe electrode with the tip gold atom moving back to the original lattice position. Consequently, the conductance value decreases by about 5–8 times, and the low conductance plateau is presented. According to our calculations, the phenomenon of high/low conductance switching in the stretching process of 4,4′-bipyridine molecular junction also indicates that, single surface gold atom often lies on the surface of substrate electrode. Moreover, the phenomenon of high/low conductance switching can only be found when the molecule is adsorbed on the surface gold atom of the substrate electrode. Thus, using conductance traces measured in the stretching processes of molecular junction and with the help of theoretical calculations, the interface structures of molecular junctions can be recognized efficiently. Our study not only decodes the physical process and intrinsic mechanism of the high/low conductance switching phenomenon of 4,4′-bipyridine molecular junction, but also provides significant technique information for using pyridine-based molecule to construct functional molecular devices, such as molecular switch, molecule memory, molecular sensor, etc.
      Corresponding author: Li Zong-Liang, lizongliang@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 11974217, 11874242) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018MA037)
    [1]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57Google Scholar

    [2]

    Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045049Google Scholar

    [3]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [4]

    Pobelov I V, Meszaros G, Yoshida K, Mishchenko A, Gulcur M, Bryce M R, Wandlowski T 2012 J. Phys.: Condens. Matter 24 164210Google Scholar

    [5]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [6]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [7]

    Xu B, Tao N J 2003 Science 301 1221Google Scholar

    [8]

    Liu R, Bi J J, Xie Z X, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [9]

    Sun D D, Su W Y, Wang F, Feng W X, Heng C L 2018 Chin. Phys. Lett. 35 017201Google Scholar

    [10]

    Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y, Hu Z Y 2018 Chin. Phys. Lett. 35 067101Google Scholar

    [11]

    Li Z L 2011 Chin. J. Chem. Phys. 24 194Google Scholar

    [12]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1433Google Scholar

    [13]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [14]

    Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X 2019 Nat. Commun. 10 1450Google Scholar

    [15]

    Li Y Q, Kan H J, Miao Y Y, Yang L, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2020 Chin. Phys. B 29 017303Google Scholar

    [16]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [17]

    Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B 2016 Nat. Chem. 8 484Google Scholar

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [19]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [20]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [21]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [22]

    Wang Q, Liu R, Xiang D, Sun M, Zhao Z, Sun L, Mei T, Wu P, Liu H, Guo X, Li Z L, Lee T 2016 ACS Nano 10 9695Google Scholar

    [23]

    Jiang Z L, Wang H, Wang Y F, Sanvito S, Hou S 2017 J. Phys. Chem. C 121 27344Google Scholar

    [24]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [25]

    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [26]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [27]

    Guo C, Chen X, Ding S Y, Mayer D, Wang Q, Zhao Z, Ni L, Liu H, Lee T, Xu B, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [28]

    Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [29]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [30]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

    [31]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [32]

    Ward D R, Halas N J, Ciszek J W, Tour J M, Wu Y, Nordlander P, Natelson D 2008 Nano Lett. 8 919Google Scholar

    [33]

    Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H, Murakoshi K 2013 J. Am. Chem. Soc. 135 1009Google Scholar

    [34]

    Liu Z, Ding S Y, Chen Z B, Wang X, Tian J H, Anema J R, Zhou X S, Wu D Y, Mao B W, Xu X, Ren B, Tian Z Q 2011 Nat. Commun. 2 305Google Scholar

    [35]

    Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807Google Scholar

    [36]

    Huang J R, Huang H, Tao C P, Zheng J F, Yuan Y, Hong Z W, Shao Y, Niu Z J, Chen J Z, Zhou X S 2019 Nanoscale Res. Lett. 14 253Google Scholar

    [37]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586Google Scholar

    [38]

    Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290Google Scholar

    [39]

    孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良 2019 物理学报 68 178502Google Scholar

    Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502Google Scholar

    [40]

    Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I 2005 Nature 436 677Google Scholar

    [41]

    Zhang Y, Ye G, Soni S, Qiu X, Krijger T L, Jonkman H T, Carlotti M, Sauter E, Zharnikov M, Chiechi R C 2018 Chem. Sci. 9 4414Google Scholar

    [42]

    Li Z L, Yi X H, Liu R, Bi J J, Fu H Y, Zhang G P, Song Y Z, Wang C K 2017 Sci. Rep. 7 4195Google Scholar

    [43]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [44]

    Ferri N, Algethami N, Vezzoli A, Sangtarash S, McLaughlin M, Sadeghi H, Lambert C J, Nichols R J, Higgins S J 2019 Angew. Chem. Int. Ed. 58 16583Google Scholar

    [45]

    Kim Y, Hellmuth T J, Bürkle M, Pauly F, Scheer E 2011 ACS Nano 5 4104Google Scholar

    [46]

    Martin C A, Ding D, Sørensen J K, Bjørnholm T, Van. Ruitenbeek J M, Van Der Zant H S J 2008 J. Am. Chem. Soc. 130 13198Google Scholar

    [47]

    Zhan C, Wang G, Zhang X G, Li Z H, Wei J Y, Si Y, Yang Y, Hong W, Tian Z Q 2019 Angew. Chem. Int. Ed. 58 14534Google Scholar

    [48]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [49]

    Pan Z C, Li J, Chen L J, Tang Y X, Shi J, Liu J Y, Liao L J, Hong W J 2019 Sci. China Chem. 62 1245Google Scholar

    [50]

    Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B, Venkataraman L 2010 J. Am. Chem. Soc. 132 6817Google Scholar

    [51]

    Kim T, Darancet P, Widawsky J R, Kotiuga M, Quek S Y, Neaton J B, Venkataraman L 2014 Nano Lett. 14 794Google Scholar

    [52]

    Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B, Nichols R J, Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378Google Scholar

    [53]

    Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B, Venkataraman L 2009 Nat. Nanotechnol 4 230Google Scholar

    [54]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nat. Mater. 11 872Google Scholar

    [55]

    Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247Google Scholar

    [56]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT

    [57]

    Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946Google Scholar

    [58]

    Soler J M, Artacho E, Gale J D, García A, Unquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [59]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [60]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

  • 图 1  STM-BJ技术中分子结形成原理示意图

    Figure 1.  The schematic structure of the forming principle of molecular junction in STM-BJ technique.

    图 2  分子体系在拉伸过程中的结构演化 (a)−(d) 吸附在基底电极表面金原子上的4, 4′-二吡啶分子结(体系I)的拉伸与结构演化过程; (e)−(g) 吸附在基底电极表面上的4, 4′-二吡啶分子结(体系II)的拉伸与结构演化过程; (h)−(k) 吸附在基底电极表面金原子上的4, 4′-二氨基联苯分子结(体系III)的拉伸与结构演化过程

    Figure 2.  Configuration evolutions in the stretching processes of molecular junctions: (a)−(d) Stretching and configuration evolution process of 4, 4′-bipyridine molecular junction, in which the 4, 4′-bipyridine molecule is adsorbed on the surface Au atom of substrate electrode (denoted as System I); (e)−(g) stretching and configuration evolution process of 4, 4′-bipyridine molecular junction, in which the 4, 4′-bipyridine molecule is adsorbed on the surface of substrate electrode (denoted as System II); (h)−(k) stretching and configuration evolution process of 4, 4′-diaminobiphenyl molecular junction, in which the 4, 4′-diaminobiphenyl molecule is adsorbed on the surface Au atom of substrate electrode (denoted as System III).

    图 3  分子体系拉伸过程中的能量、作用力和电导变化曲线 (a) 体系I拉伸过程中的能量、作用力随电极距离的变化曲线及其(b) 电导变化曲线, 其中左下插图为文献[53]中实验测量结果, 右上插图为非平衡格林函数(NEGF)方法计算结果; (c) 体系II 和 (d) 体系III的能量、作用力随电极距离的变化曲线, (c)中插图为体系II拉伸过程中电导变化曲线

    Figure 3.  Energy, force, and conductance traces of the molecular junctions in the stretching processes: (a) Energy, force and (b) conductance traces as functions of electrode distances for the stretching process of system I. The bottom-left inset in (b) is the experimental conductance traces that are reported in Ref. [53], and the top-right inset in (b) is the results calculated by applying NEGF method. (c) Energy and force traces as functions of electrode distances for the stretching process of system II and (d) system III. The inset in (c) is the conductance traces of system II.

    图 4  图2体系I (b)和体系I (c)中同时扩展到分子与探针电极上的所有占据分子轨道空间分布图, 图中数字为各轨道相对于费米能级的能量(单位: eV)

    Figure 4.  Spatial distributions of occupied molecular orbitals of System I (b) and System I (c) in Fig. 2 that are delocalized on the molecule and probe electrode simultaneously. The numbers in the figures are the orbital energy relative to the Fermi level (the unit is eV)

    图 5  (a) 分子吸附到探针电极第二层金原子上(图2中体系I (b))和 (b) 分子吸附到探针电极尖端金原子上(图2中体系I (c))体系所在的空间的电势分布图

    Figure 5.  (a) Spatial distributions of potential of the system that the molecule adsorbs on the second gold layer of prob electrode (system I (b) in Fig. 2) and (b) the system that the molecule adsorbs on the top gold of prob electrode (system I (c) in Fig. 2).

  • [1]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57Google Scholar

    [2]

    Schneider N L, Johansson P, Berndt R 2013 Phys. Rev. B 87 045049Google Scholar

    [3]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [4]

    Pobelov I V, Meszaros G, Yoshida K, Mishchenko A, Gulcur M, Bryce M R, Wandlowski T 2012 J. Phys.: Condens. Matter 24 164210Google Scholar

    [5]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [6]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [7]

    Xu B, Tao N J 2003 Science 301 1221Google Scholar

    [8]

    Liu R, Bi J J, Xie Z X, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [9]

    Sun D D, Su W Y, Wang F, Feng W X, Heng C L 2018 Chin. Phys. Lett. 35 017201Google Scholar

    [10]

    Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y, Hu Z Y 2018 Chin. Phys. Lett. 35 067101Google Scholar

    [11]

    Li Z L 2011 Chin. J. Chem. Phys. 24 194Google Scholar

    [12]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1433Google Scholar

    [13]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [14]

    Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X 2019 Nat. Commun. 10 1450Google Scholar

    [15]

    Li Y Q, Kan H J, Miao Y Y, Yang L, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2020 Chin. Phys. B 29 017303Google Scholar

    [16]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [17]

    Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B 2016 Nat. Chem. 8 484Google Scholar

    [18]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [19]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [20]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [21]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [22]

    Wang Q, Liu R, Xiang D, Sun M, Zhao Z, Sun L, Mei T, Wu P, Liu H, Guo X, Li Z L, Lee T 2016 ACS Nano 10 9695Google Scholar

    [23]

    Jiang Z L, Wang H, Wang Y F, Sanvito S, Hou S 2017 J. Phys. Chem. C 121 27344Google Scholar

    [24]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [25]

    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [26]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [27]

    Guo C, Chen X, Ding S Y, Mayer D, Wang Q, Zhao Z, Ni L, Liu H, Lee T, Xu B, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [28]

    Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [29]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [30]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

    [31]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [32]

    Ward D R, Halas N J, Ciszek J W, Tour J M, Wu Y, Nordlander P, Natelson D 2008 Nano Lett. 8 919Google Scholar

    [33]

    Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H, Murakoshi K 2013 J. Am. Chem. Soc. 135 1009Google Scholar

    [34]

    Liu Z, Ding S Y, Chen Z B, Wang X, Tian J H, Anema J R, Zhou X S, Wu D Y, Mao B W, Xu X, Ren B, Tian Z Q 2011 Nat. Commun. 2 305Google Scholar

    [35]

    Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807Google Scholar

    [36]

    Huang J R, Huang H, Tao C P, Zheng J F, Yuan Y, Hong Z W, Shao Y, Niu Z J, Chen J Z, Zhou X S 2019 Nanoscale Res. Lett. 14 253Google Scholar

    [37]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586Google Scholar

    [38]

    Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L, Wang C K 2014 Phys. Lett. A 378 1290Google Scholar

    [39]

    孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良 2019 物理学报 68 178502Google Scholar

    Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502Google Scholar

    [40]

    Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I 2005 Nature 436 677Google Scholar

    [41]

    Zhang Y, Ye G, Soni S, Qiu X, Krijger T L, Jonkman H T, Carlotti M, Sauter E, Zharnikov M, Chiechi R C 2018 Chem. Sci. 9 4414Google Scholar

    [42]

    Li Z L, Yi X H, Liu R, Bi J J, Fu H Y, Zhang G P, Song Y Z, Wang C K 2017 Sci. Rep. 7 4195Google Scholar

    [43]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [44]

    Ferri N, Algethami N, Vezzoli A, Sangtarash S, McLaughlin M, Sadeghi H, Lambert C J, Nichols R J, Higgins S J 2019 Angew. Chem. Int. Ed. 58 16583Google Scholar

    [45]

    Kim Y, Hellmuth T J, Bürkle M, Pauly F, Scheer E 2011 ACS Nano 5 4104Google Scholar

    [46]

    Martin C A, Ding D, Sørensen J K, Bjørnholm T, Van. Ruitenbeek J M, Van Der Zant H S J 2008 J. Am. Chem. Soc. 130 13198Google Scholar

    [47]

    Zhan C, Wang G, Zhang X G, Li Z H, Wei J Y, Si Y, Yang Y, Hong W, Tian Z Q 2019 Angew. Chem. Int. Ed. 58 14534Google Scholar

    [48]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [49]

    Pan Z C, Li J, Chen L J, Tang Y X, Shi J, Liu J Y, Liao L J, Hong W J 2019 Sci. China Chem. 62 1245Google Scholar

    [50]

    Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B, Venkataraman L 2010 J. Am. Chem. Soc. 132 6817Google Scholar

    [51]

    Kim T, Darancet P, Widawsky J R, Kotiuga M, Quek S Y, Neaton J B, Venkataraman L 2014 Nano Lett. 14 794Google Scholar

    [52]

    Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B, Nichols R J, Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378Google Scholar

    [53]

    Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B, Venkataraman L 2009 Nat. Nanotechnol 4 230Google Scholar

    [54]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nat. Mater. 11 872Google Scholar

    [55]

    Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K, Hu G C 2019 J. Magn. Magn. Mater. 479 247Google Scholar

    [56]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT

    [57]

    Liu R, Wang C K, Li Z L 2016 Sci. Rep. 6 21946Google Scholar

    [58]

    Soler J M, Artacho E, Gale J D, García A, Unquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [59]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [60]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

  • [1] Xing Hai-Ying, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying, Ru Jin-Dou. Regulation and mechanism of graphene electrode bending on negative differential resistance of 2-phenylpyridine molecular devices. Acta Physica Sinica, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] Xie Zhong-Xiang, Yu Xia, Jia Pin-Zhen, Chen Xue-Kun, Deng Yuan-Xiang, Zhang Yong, Zhou Wu-Xing. Thermoelectric properties of acene molecular junctions. Acta Physica Sinica, 2023, 72(12): 124401. doi: 10.7498/aps.72.20230354
    [3] Li Rui-Hao, Liu Jun-Yang, Hong Wen-Jing. Regulation strategies based on quantum interference in electrical transport of single-molecule devices. Acta Physica Sinica, 2022, 71(6): 067303. doi: 10.7498/aps.71.20211819
    [4] Regulation strategies based on quantum interference in electrical transport of single-molecule devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211819
    [5] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [6] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [7] Sun Feng, Liu Ran, Suo Yu-Qing, Niu Le-Le, Fu Huan-Yan, Ji Wen-Fang, Li Zong-Liang. First principle study on stretching and breaking process of single-molecule junction: Terminal group effect. Acta Physica Sinica, 2019, 68(17): 178502. doi: 10.7498/aps.68.20190693
    [8] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic properties of AlC (X4∑-, B4∑-) molecule. Acta Physica Sinica, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [9] Peng De-Feng, Jiang Wu-Gui, Peng Chuan. Steered molecular dynamics simulation of peeling a carbon nanotube on silicon substrate. Acta Physica Sinica, 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [10] Deng Lun-Hua, Li Chuan-Liang, Zhu Yuan-Yue, He Wen-Yan, Chen Yang-Qin. The absorption spectrum study of the (4, 0) band in the b4Σ--a4Πi system of NO. Acta Physica Sinica, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [11] Hu Wei, Li Zong-Liang, Ma Yong, Li Ying-De, Wang Chuan-Kui. Geometric structure and electronic transport property of single alkanemonothiol molecule junction: external force effect and terminal group effect. Acta Physica Sinica, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [12] Wang Yu, Zhang Lin-Xi. Steered molecular dynamics investigation of force-induced detachment of adsorbed single polymer chains. Acta Physica Sinica, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [13] Liu Hao, Ke Fu-Jiu, Pan Hui, Zhou Min. Molecular dynamics simulation of the diffusion bonding and tensile behavior of a Cu-Al interface. Acta Physica Sinica, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [14] Xia Cai-Juan, Fang Chang-Feng, Hu Gui-Chao, Li Dong-Mei, Liu De-Sheng, Xie Shi-Jie. Effect of the relative orientation of molecules on the electronic transport property of molecular devices. Acta Physica Sinica, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [15] Wang Li-Guang, Chen Lei, Yu Ding-Wen, Li Yong, Terence K. S. W.. Dependence of electronic-transport sensitivity on the coupling between single molecule and atomic-chain electrode. Acta Physica Sinica, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [16] Li Ying-De. A theoretical study of electrical properties of molecular junction. Acta Physica Sinica, 2006, 55(6): 2997-3002. doi: 10.7498/aps.55.2997
    [17] Zhang Shu-Feng, Su Guo-Lin, Ren Xue-Guang, Ning Chuan-Gang, Zhou Hui, Li Bin, Li Gui-Qin, Deng Jing-Kang. Investigation of electron momentum spectroscopy for inner valence orbitals 4a gg+4buu of diacetyl. Acta Physica Sinica, 2005, 54(4): 1552-1556. doi: 10.7498/aps.54.1552
    [18] Li Zong-Liang, Wang Chuan-Kui, Luo Yi, Xue Qi-Kun. Effect of the electronic dimensionality of electrodes on the current-voltage characteristics of single molecular devices. Acta Physica Sinica, 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
    [19] Wang Wei, Huang Lan, Zhang Yu, Li Chang-Min, Zhang Hai-Qian, Gu Yu, Shen Hao-Ying, Chen Tang-Sheng, Hao Li-Ping, Peng Li, Zhao Li-Xin. . Acta Physica Sinica, 2002, 51(1): 63-67. doi: 10.7498/aps.51.63
    [20] LI LE, YU GONG-DA, DONG SHU-YAN, WANG GONG-MING, ZHANG ZHI-MING. STUDIES ON THE ADSORPTION OF PYRIDINE MOLECULES ON SILVER SURFACES BY SHG METHOD. Acta Physica Sinica, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
Metrics
  • Abstract views:  6343
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  10 August 2020
  • Accepted Date:  30 August 2020
  • Available Online:  25 September 2020
  • Published Online:  20 October 2020

/

返回文章
返回