Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectroscopic and transition properties of SeH anion including spin-orbit coupling

Wan Ming-Jie Liu Fu-Ti Huang Duo-Hui

Citation:

Spectroscopic and transition properties of SeH anion including spin-orbit coupling

Wan Ming-Jie, Liu Fu-Ti, Huang Duo-Hui
PDF
HTML
Get Citation
  • Potential energy curves (PECs), permanent dipole moments (PDMs) and transition dipole moments (TMDs) of five Λ-S states of SeH anion are calculated by the MRCI + Q method with ACVQZ-DK basis set. The core-valence corrections, Davidson corrections, scalar relativistic corrections, and spin-orbit coupling (SOC) effects are also considered. In the CASSCF step, Se(1s2s2p3s3p) shells are put into the frozen orbitals, which are not optimized. Six molecular orbitals are chosen as active space, including H(1s) and Se(4s4p5s) shells, and eight electrons are distributed in a (4, 1, 1, 0) active space, which is referred to as CAS (8, 6), and the Se(3d) shell is selected as a closed-shell, which keeps doubly occupation. In the MRCI step, the remaining Se(3d) shell is used for core-valence calculations of SeH anion. The SOC effects are taken into account in the one- and two- electron Breit-Pauli operators.The b3Σ+ state is a repulsive state. Other excited states are bound, and all states possess two potential wells. The $ {{\rm{b}}^{{3}}}\Sigma _{{0^ - }}^ + $ and $ {{\rm{b}}^3}\Sigma _{{1}}^ + $ both turn into bound states when the SOC effect is considered. All spectroscopic parameters of Λ-S states and Ω states are reported for the first time. The TDMs of the $ {{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, $ {{\rm{a}}^{{3}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, $ {{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, $ {{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _{{1}}}$, and $ {{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}$ transitions are also calculated. The TDMs of the $ {{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $ and $ {{\rm{a}}^{{3}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $ transitions are large in the Franck-Condon region, which are about –2.05 Debye (D) and 1.45 D at Re. Notably, the TDMs of the $ {{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition cannot be ignored. The value of TDM at Re equals –0.15 D.Based on the accurately PECs and PDMs, the values of Franck-Condon factor fυυ, vibrational branching ratio Rυυ and radiative coefficient of the $ {{\rm{a}}^{{3}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, $ {{\rm{a}}^{{3}}}{{{\Pi }}_{{{{0}}^{{ + }}}}} \leftrightarrow {{\rm{X}}^{{1}}}{{\Sigma }}_{{0^ + }}^ + $, and $ {{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $ transitions are also calculated. Highly diagonally distributed Franck-Condon factor f00 and the values of vibrational branching ratio R00 of the $ {{\rm{a}}^{{3}}}{\Pi _{{1}}}(\upsilon ') \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\upsilon '')$, $ {{\rm{a}}^{{3}}}{\Pi _{{0^ + }}}(\upsilon ') \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\upsilon '')$, and $ {{\rm{A}}^1}{\Pi _1}(\upsilon ') \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\upsilon '')$ transitions are obtained, respectively. Spontaneous radiation lifetimes of the $ {{\rm{a}}^3}{\Pi _{{1}}}$, $ {{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$, and $ {{\rm{A}}^1}{\Pi _{{1}}}$ excited states are all short for rapid laser cooling. The influences of intervening states of the $ {{\rm{A}}^1}{\Pi _1}(\upsilon ') \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\upsilon '')$ transition can be ignored. The proposed cooling wavelengths using the $ {{\rm{a}}^3}{\Pi _{{1}}}(\upsilon ') \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + (\upsilon '')$, $ {{\rm{a}}^{{3}}}{\Pi _{{0^ + }}}(\upsilon ') \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\upsilon '')$, and $ {{\rm{A}}^1}{\Pi _1}(\upsilon ') \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\upsilon '')$ transitions are all in the visible region.
      Corresponding author: Huang Duo-Hui, hdhzhy912@163.com
    • Funds: Project supported by the Pre-Research Project of Yibin University, China (Grant No. 2019YY06) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. YBXYJSWL-ZD-2020-001)
    [1]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [2]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [3]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [4]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [5]

    You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502Google Scholar

    [6]

    Cui J, Xu J G, Qi J X, Dou G, Zhang Y G 2018 Chin. Phys. B 27 103101Google Scholar

    [7]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309Google Scholar

    [8]

    张云光, 张华, 窦戈, 徐建刚 2017 物理学报 66 233101Google Scholar

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101Google Scholar

    [9]

    Xu L, Wei W, Xia Y, Deng L Z, Yin J P 2017 Chin. Phys. B 26 033702Google Scholar

    [10]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001Google Scholar

    [11]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta. Part A 185 365Google Scholar

    [12]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta. Part A 182 130Google Scholar

    [13]

    Zeid I, Abdallah R A, El Kork N, Korek M 2020 Spectrochim. Acta. Part A 224 117461Google Scholar

    [14]

    Wan M J, Huang D H, Yu Y, Zhang Y G 2017 Phys. Chem. Chem. Phys. 19 27360Google Scholar

    [15]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta. Phys. Sin. 68 063103Google Scholar

    [16]

    Deng B L, Wan M J, Zhao X F, Tang K, Zhang X Q 2020 Spectrochim. Acta. Part A 227 117684Google Scholar

    [17]

    Stoneman R C, Larson D J 1987 Phys. Rev. A 35 2928Google Scholar

    [18]

    Brown J M, Fackerell A D 1982 Physica. Scripta. 25 351Google Scholar

    [19]

    Balasubramanian K, Liao M Z, Han M 1987 Chem. Phys. Lett. 139 551Google Scholar

    [20]

    Binning Jr R C, Curtiss L A 1990 J. Chem. Phys. 92 1860Google Scholar

    [21]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)

    [22]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [23]

    Werner H J, Meyer W 1980 J. Chem. Phys. 73 2342Google Scholar

    [24]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [25]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [26]

    Laughoff S R, Davidson E R 1974 Int. J Quantum. Chem. 8 61Google Scholar

    [27]

    Douglas N, Kroll N M 1974 Ann. Phys. 82 89Google Scholar

    [28]

    Hess B A 1986 Phys. Rev. A 33 3742Google Scholar

    [29]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [30]

    DeYonker N J, Peterson K A, Wilson A K 2007 J. Phys Chem A 111 11383Google Scholar

    [31]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [32]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [33]

    Huber K, Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p586

    [34]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: US Govt Printing Office) pp2, 150

    [35]

    Lykke K R, Murray K K, Lineberger W C 1991 Rhys. Rev. A 43 6104Google Scholar

    [36]

    Hotop H, Lineberger W C 1985 J. Phys. Chem. Ref. Data 14 731Google Scholar

    [37]

    Lane I C 2015 Phys. Rev. A 92 022511Google Scholar

    [38]

    You Y, Yang C L, Zhang Q Q, Wang M S, Ma X G, Wang W W 2016 Phys. Chem. Chem. Phys. 18 19838Google Scholar

  • 图 1  X1Σ+, a3Π, A1Π, b3Σ+和21Σ+电子态的势能曲线

    Figure 1.  Potential energy curves of the X1Σ+, a3Π, A1Π, b3Σ+, and 21Σ+ states.

    图 2  9个Ω电子态的势能曲线

    Figure 2.  Potential energy curves of nine Ω states.

    图 3  ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _1}$${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}$跃迁的跃迁偶极矩

    Figure 3.  Transition dipole moments of the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _1}$, and ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}$ transition.

    图 4  激光冷却SeH阴离子的方案 (a)${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁; (b) ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁

    Figure 4.  Proposed laser cooling scheme: (a) Using the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition; (b) using the ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition.

    图 5  采用${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁进行激光冷却SeH阴离子的方案

    Figure 5.  Proposed laser cooling scheme by using the ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition.

    表 1  Λ-S的光谱常数

    Table 1.  Spectroscopic parameters of the Λ-S states.

    Λ-S态来源Reωe/cm–1ωeχe/cm–1Be/cm–1De/eVTe/cm–1
    X1Σ+ACVQZ-DK1.46942300.7746.107.85073.4870
    AVQZ-DK1.46142380.3245.577.93263.711
    实验[17]1.4696 a7.7289 c
    1.4806 b
    a3Π本文工作第一势阱1.47782206.52123.457.84280.51920642.90
    第二势阱2.1787839.8749.663.440160.45024549.11
    A1Π本文工作第一势阱1.47262373.65127.147.83910.73421240.75
    第二势阱2.2780437.6244.073.09320.14726997.57
    b3Σ+本文工作repulsive
    21Σ+本文工作第一势阱1.61881336.456.19550.22851684.73
    第二势阱4.0808198.909.961.01900.13546349.30
    注: a 为SeH分子基态的平衡核间距的实验值来源于文献[18]; b为SeH分子基态的平衡核间距的实验值来源于文献[33], 结果不准确;
    c 为采用最小二乘法得到转动惯量B.
    DownLoad: CSV

    表 2  第VI主簇氢化物阴离子基态的光谱常数

    Table 2.  Spectroscopic parameters of the ground state X1Σ+ of the Group VI-hydride anions.

    阴离子来源Reωe/cm–1ωeχe/cm–1Be/cm–1De/eV
    OH文献[14]0.96453722.1087.9319.11114.9857
    SH文献[15]1.34352622.0446.669.55903.8793
    SeH本文工作1.46942300.7746.107.85073.487
    TeH文献[16]1.66311973.7336.82726.09963.0568
    DownLoad: CSV

    表 3  Ω态的离解关系

    Table 3.  Calculated dissociation relationships of the Ω states.

    离解通道分子态(Ω)相对能量/cm–1
    ACVQZ-DKAVQZ-DK实验[34-36]
    Se(2P3/2) + H(2S1/2)2, 1, 1, 0+, 0000
    Se(2P1/2) + H(2S1/2)1, 0+, 02303.772192.98
    Se(1D2) + H(1S0)0+20032.2419047.4519790.88
    DownLoad: CSV

    表 4  Ω电子态的光谱常数

    Table 4.  Spectroscopic parameters of the Ω states.

    Ω态Reωe/cm–1ωeχe/cm–1Be/cm–1De/eVTe/cm–1
    ${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $1.46942301.3147.017.84993.3950
    ${{\rm{a}}^3}{\Pi _2}$第一势阱1.47772207.22122.397.84160.52319787.17
    第二势阱2.1739861.0252.103.40810.45423751.54
    ${{\rm{a}}^3}{\Pi _{{1}}}$第一势阱1.47592232.16111.707.84340.56020036.27
    第二势阱2.1822818.1155.643.39290.38624301.10
    ${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}}$第一势阱1.47782205.83124.977.84850.51321472.52
    第二势阱2.1986778.2873.703.40480.26725261.96
    ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$第一势阱1.47772208.03122.907.84220.52221477.12
    第二势阱2.1619904.1549.023.43550.52725454.22
    ${{\rm{A}}^1}{\Pi _{{1}}}$第一势阱1.47442368.50144.227.82620.68621821.04
    第二势阱排斥态
    ${{\rm{b}}^3}\Sigma _{{0^ - }}^ + $第一势阱3.1807318.8935.641.69880.09628945.41
    ${{\rm{b}}^3}\Sigma _{{1}}^ + $第二势阱3.2046239.1330.941.66620.06629184.63
    ${2^1}\Sigma _{{0^ + }}^ + $第一势阱1.61901332.506.18950.22551714.58
    第二势阱4.0800190.578.841.01900.13546351.94
    DownLoad: CSV

    表 5  ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $${{\rm{A}}^1}{\Pi _1} \leftrightarrow $${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$跃迁的辐射系数${A_{\upsilon '\upsilon ''}}$、弗兰克-康登因子${f_{\upsilon '\upsilon ''}}$和振动分支比${R_{\upsilon '\upsilon ''}}$

    Table 5.  Emission rates ${A_{\upsilon '\upsilon ''}}$, Franck-Condon Factors ${f_{\upsilon '\upsilon ''}}$, branching ratios ${R_{\upsilon '\upsilon ''}}$ of the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, and ${{\rm{A}}^1}{\Pi _1} \leftrightarrow $ ${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$ transitions.

    Index${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow $
    ${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $
    ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow $
    ${{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $
    ${{\rm{A}}^1}{\Pi _1} \leftrightarrow$
    $ {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $
    ${f_{\upsilon '\upsilon ''}}$f000.99490.99220.9974
    f010.00470.00720.0025
    f020.00040.00060.0001
    f100.00510.00790.0026
    f110.95410.93240.9792
    f120.03370.04860.0159
    ${A_{\upsilon '\upsilon ''}}\rm /s$A005.02×1068.02×1041.36×107
    A011.88×1024.28×1031.87×104
    A022.81×1017.48×1012.00×103
    A101.10×1056.50×1025.79×104
    A114.13×1069.13×1041.32×107
    A121.32×1041.57×1041.45×105
    ${R_{\upsilon '\upsilon ''}}$R000.999960.94840.9985
    R013.7×10–50.05060.0014
    R025.6×10–60.00090.0001
    R100.025920.00600.0043
    R110.97070.83940.9836
    R120.00310.14460.0108
    DownLoad: CSV
  • [1]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [2]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [3]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [4]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [5]

    You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502Google Scholar

    [6]

    Cui J, Xu J G, Qi J X, Dou G, Zhang Y G 2018 Chin. Phys. B 27 103101Google Scholar

    [7]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309Google Scholar

    [8]

    张云光, 张华, 窦戈, 徐建刚 2017 物理学报 66 233101Google Scholar

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101Google Scholar

    [9]

    Xu L, Wei W, Xia Y, Deng L Z, Yin J P 2017 Chin. Phys. B 26 033702Google Scholar

    [10]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001Google Scholar

    [11]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta. Part A 185 365Google Scholar

    [12]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta. Part A 182 130Google Scholar

    [13]

    Zeid I, Abdallah R A, El Kork N, Korek M 2020 Spectrochim. Acta. Part A 224 117461Google Scholar

    [14]

    Wan M J, Huang D H, Yu Y, Zhang Y G 2017 Phys. Chem. Chem. Phys. 19 27360Google Scholar

    [15]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta. Phys. Sin. 68 063103Google Scholar

    [16]

    Deng B L, Wan M J, Zhao X F, Tang K, Zhang X Q 2020 Spectrochim. Acta. Part A 227 117684Google Scholar

    [17]

    Stoneman R C, Larson D J 1987 Phys. Rev. A 35 2928Google Scholar

    [18]

    Brown J M, Fackerell A D 1982 Physica. Scripta. 25 351Google Scholar

    [19]

    Balasubramanian K, Liao M Z, Han M 1987 Chem. Phys. Lett. 139 551Google Scholar

    [20]

    Binning Jr R C, Curtiss L A 1990 J. Chem. Phys. 92 1860Google Scholar

    [21]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)

    [22]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [23]

    Werner H J, Meyer W 1980 J. Chem. Phys. 73 2342Google Scholar

    [24]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [25]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [26]

    Laughoff S R, Davidson E R 1974 Int. J Quantum. Chem. 8 61Google Scholar

    [27]

    Douglas N, Kroll N M 1974 Ann. Phys. 82 89Google Scholar

    [28]

    Hess B A 1986 Phys. Rev. A 33 3742Google Scholar

    [29]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [30]

    DeYonker N J, Peterson K A, Wilson A K 2007 J. Phys Chem A 111 11383Google Scholar

    [31]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [32]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [33]

    Huber K, Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p586

    [34]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: US Govt Printing Office) pp2, 150

    [35]

    Lykke K R, Murray K K, Lineberger W C 1991 Rhys. Rev. A 43 6104Google Scholar

    [36]

    Hotop H, Lineberger W C 1985 J. Phys. Chem. Ref. Data 14 731Google Scholar

    [37]

    Lane I C 2015 Phys. Rev. A 92 022511Google Scholar

    [38]

    You Y, Yang C L, Zhang Q Q, Wang M S, Ma X G, Wang W W 2016 Phys. Chem. Chem. Phys. 18 19838Google Scholar

  • [1] Zhu Yu-Hao, Li Rui. Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method. Acta Physica Sinica, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [2] Feng Zhuo, Suo Bing-Bing, Han Hui-Xian, Li An-Yang. High-precision electron structure calculation of CaSH molecules and theoretical analysis of its application to laser-cooled target molecules. Acta Physica Sinica, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [3] Wang Xin-Yu, Wang Yi-Lin, Shi Qian-Han, Wang Qing-Long, Yu Hong-Yang, Jin Yuan-Yuan, Li Song. Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [4] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [5] Hou Qiu-Yu, Guan Hao-Yi, Huang Yu-Lu, Chen Shi-Lin, Yang Ming, Wan Ming-Jie. Electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [6] Hou Qiu-Yu,  Guan Hao-Yi,  Huang Yu-Lu,  Chen Shi-Lin,  Yang Ming,  Wan Ming-Jie. The electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [7] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [8] Theoretical study of the potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211441
    [9] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [10] Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie. Theoretical study on electronic structure and transition properties of excited states for SeH+ anion. Acta Physica Sinica, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [11] Chen Tao, Yan Bo. Laser cooling and trapping of polar molecules. Acta Physica Sinica, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [12] Wan Ming-Jie, Li Song, Jin Cheng-Guo, Luo Hua-Feng. Theoretical study of laser-cooled SH anion. Acta Physica Sinica, 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [13] Wan Ming-Jie, Luo Hua-Feng, Yuan Di, Li Song. Theoretical study of laser cooling of potassium chloride anion. Acta Physica Sinica, 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [14] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [15] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [16] Zhang Yun-Guang, Zhang Hua, Dou Ge, Xu Jian-Gang. Laser cooling of OH molecules in theoretical approach. Acta Physica Sinica, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [17] Sun Yu, Feng Gao-Ping, Cheng Cun-Feng, Tu Le-Yi, Pan Hu, Yang Guo-Min, Hu Shui-Ming. Precision spectroscopy of helium using a laser-cooled atomic beam. Acta Physica Sinica, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [18] Zhang Bao-Wu, Zhang Ping-Ping, Ma Yan, Li Tong-Bao. Simulations of one-dimensional transverse laser cooling of Cr atomic beam with Monte Carlo method. Acta Physica Sinica, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [19] Zhang Peng-Fei, Xu Xin-Ping, Zhang Hai-Chao, Zhou Shan-Yu, Wang Yu-Zhu. UV light-induced atom desorption for magnetic trap in single vacuum chamber. Acta Physica Sinica, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [20] Xie Min, Ling Lin, Yang Guo-Jian. Velocity-selective coherent population trapping of a nondegenerate Λ three-level atom. Acta Physica Sinica, 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
Metrics
  • Abstract views:  5870
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2020
  • Accepted Date:  21 September 2020
  • Available Online:  26 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回