Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-accuracy dual-slope-assisted chaotic Brillouin fiber dynamic strain measurement

Wang Ya-Hui Zhao Le Hu Xin-Xin Guo Yang Zhang Jian-Zhong Qiao Li-Jun Wang Tao Gao Shao-Hua Zhang Ming-Jiang

Citation:

High-accuracy dual-slope-assisted chaotic Brillouin fiber dynamic strain measurement

Wang Ya-Hui, Zhao Le, Hu Xin-Xin, Guo Yang, Zhang Jian-Zhong, Qiao Li-Jun, Wang Tao, Gao Shao-Hua, Zhang Ming-Jiang
PDF
HTML
Get Citation
  • Nowadays, distributed dynamic sensing technology based on stimulated Brillouin scattering has been widely employed in civil structure health monitoring, disaster warning, national defense, etc. In this paper, we propose and experimentally demonstrate a novel Brillouin optical correlation-domain analysis based-on gain-switch modulation and dual-slope assisted method for achieving high-accuracy large-range dynamic strain measurement. In single-slope assisted chaotic Brillouin sensing, the measurement accuracy of dynamic strain is deteriorated by the inherent characteristics of time delay signature and power stochastic fluctuations. First, the mechanism behind the acoustic field deterioration and principle of background noise suppression are analyzed theoretically. Then, the chaotic continuous pump light is modulated into pulsed light with a higher extinct ratio of 48.6 dB, where the electro-optical modulator is replaced by a gain switch. And thus, the noise peaks, induced by the secondary peaks and irregular basal oscillations of chaotic auto-correlation curve, are greatly restrained. Comparing with the electro-optical modulator-based system, the signal-to-noise ratio of stimulated Brillouin acoustic field is increased by 3.31 dB in simulation and the signal-to-background ratio of Brillouin gain spectrum is doubled in experiment. Consequently, the measurement accuracy of dynamic strain is improved from ± 40.2 με to ± 23.1 με and the relative error decreases from ± 5.0% to ± 2.9% in single-slope assisted system based-on gain switch modulation. In addition, a dual-slope assisted method is inspired to eliminate the detrimental effect caused by the intrinsic power fluctuations of chaotic laser. A verification experiment is pre-conducted that the dynamic strain could be correctly interrogated although a wide range pump power variation has been manually applied. The measurement accuracy is ultimately enhanced to ± 8.1 με and the relative error is ± 1% correspondingly, implying a higher stability. The dynamic range of this proposed system is retained at 800 με, which is approximately 5 times as large as the dynamic range of the traditional dual-slope assisted configurations. The 4-cm spatial resolution along 30-m FUT is also investigated and consistent with the result obtained previously. A larger measurement range and a higher vibration frequency would be further explored by using the multi-slope assisted method and piezoelectric ceramic oscillator respectively. The superior slope-assisted chaotic Brillouin optical correlation-domain analysis will provide a new solution for the accurate positioning and real-time monitoring of dynamic parameters in modern industry.
      Corresponding author: Zhang Ming-Jiang, zhangmingjiang@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61527819, 61875146), the Key R&D Program (High-Tech Field) of Shanxi Province, China (Grant Nos. 201903D121177, 201803D121064), and the Program for Sanjin Scholar of Shanxi Province, China (Grant No. 201617)
    [1]

    Bao X Y, Chen L 2011 Sensors 11 4152Google Scholar

    [2]

    刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar

    Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li Z H 2017 Acta Phys. Sin. 66 070705Google Scholar

    [3]

    饶云江 2017 物理学报 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [4]

    胡鑫鑫, 王亚辉, 赵乐, 张倩, 张明江, 张建忠, 乔丽君, 王涛, 高少华 2021 中国激光 48 0100001Google Scholar

    Hu X X, Wang Y H, Zhao L, Zhang Q, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao S H 2021 Chin. J. Lasers 48 0100001Google Scholar

    [5]

    朱涛, 郑华, 张敬栋 2020 应用科学学报 38 197Google Scholar

    Zhu T, Zheng H, Zhang J D 2020 J. Appl. Sci. 38 197Google Scholar

    [6]

    周登望, 王本章, 巴德欣, 徐金龙, 徐鹏柏, 姜桃飞, 张东昱, 李惠, 董永康 2018 光学学报 38 0328005Google Scholar

    Zhou D W, Wang B Z, Ba D X, Xu J L, Xu P B, Jiang T F, Zhang D Y, Li H, Dong Y K 2018 Acta Opt. Sin. 38 0328005Google Scholar

    [7]

    Voskoboinik A, Yilmaz O, Willner A, Tur M 2011 Opt. Express 19 B842Google Scholar

    [8]

    Peled Y, Motil A, Tur M 2012 Opt. Express 20 8584Google Scholar

    [9]

    Zhou D W, Dong Y K, Wang B Z, Pang C, Ba D X, Zhang H Y, Lu Z W, Li H, Bao X Y 2018 Light Sci. Appl. 7 32Google Scholar

    [10]

    Zhang C Y, Kishi M, Hotate K 2015 Appl. Phys. Express 8 042501Google Scholar

    [11]

    Wang B, Fan X Y, Fu Y X, He Z Y 2018 Opt. Express 26 6916Google Scholar

    [12]

    Bernini R, Minardo A, Zeni L 2009 Opt. Lett. 34 2613Google Scholar

    [13]

    Peled Y, Motil A, Yaron L, Tur M 2011 Opt. Express 19 19845Google Scholar

    [14]

    Yang G Y, Fan X Y, He Z Y 2017 J. Lightwave Technol. 35 4451Google Scholar

    [15]

    Yang G Y, Fan X Y, Wang B, He Z Y 2018 Opt. Express 26 32599Google Scholar

    [16]

    Motil A, Danon O, Peled Y, Tur M 2014 IEEE Photonics Technol. Lett. 26 797Google Scholar

    [17]

    Ba D X, Wang B Z, Zhou D W, Yin M J, Dong Y K, Li H, Lu Z W, Fan Z G 2016 Opt. Express 24 9781Google Scholar

    [18]

    Zheng H, Feng D Q, Zhang J D, Zhu T, Bai Y Z, Qu D R, Huang X B, Qiu F 2019 Opt. Lett. 44 1245Google Scholar

    [19]

    Wang B, Fan X, Fu Y X, He Z 2019 J. Lightwave Technol. 37 4573Google Scholar

    [20]

    Wang Y H, Zhao L, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao S H, Zhang Q, Wang Y C 2020 Opt. Lett. 45 1822Google Scholar

    [21]

    Zhao L, Wang Y H, Hu X X, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao S H, Himika A A 2020 Opt. Express 28 18189Google Scholar

    [22]

    Jeong J H, Lee K, Song K Y, Jeong J M, Lee S B 2011 Opt. Express 19 18721Google Scholar

    [23]

    Zhang J Z, Wang Y H, Zhang M J, Zhang Q, Li M W, Wu C Y, Qiao L J, Wang Y C 2018 Opt. Express 26 17597Google Scholar

    [24]

    Bai Q, Xue B, Gu H, Wang D, Wang Y , Zhang M J, Jin B Q, Wang Y C 2019 IEEE Photon. Technol. Lett. 31 283

    [25]

    Wang Y H, Zhang M J, Zhang J Z, Qiao L J, Wang T, Zhang Q, Zhao L, Wang Y C 2019 J. Lightwave Technol. 37 3706Google Scholar

    [26]

    张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐 2019 物理学报 68 104208Google Scholar

    Zhang Q, Wang Y H, Zhang M J, Zhang J Z, Qiao L J, Wang T, Zhao L 2019 Acta Phys. Sin. 68 104208Google Scholar

  • 图 1  斜坡辅助式混沌布里渊光相关域分析动态应变传感技术实验装置图. 插图A为相同输出功率下混沌激光器与分布式反馈半导体激光器的输出信号时序, 插图B为混沌激光自相关曲线和多阶相关峰示意图, 插图C为连续混沌激光被调制为脉冲混沌激光

    Figure 1.  Experimental setup of SA-CBOCDA for dynamic strain sensing. Inset A, the time series of chaotic laser and that of DFB-LD under the same output power. Inset B, the autocorrelation curve of chaotic laser and the schematic diagram of multiple order correlation peaks. Inset C, the continuous chaotic laser being amplitude-modulated into pulse chaos.

    图 2  不同调制方式及作用效果 (a)不同调制方式下脉冲混沌光时序及消光比; (b)不同调制方式下仿真的混沌受激布里渊声波场强度及信噪比

    Figure 2.  Different modulation methods and the corresponding effects: (a) The time series of pulse chaos and ERs of these under different modulation modes; (b) simulation results of chaotic SBS acoustic field amplitude and the corresponding SNR.

    图 3  不同调制方式下的归一化混沌布里渊增益谱及其信号背景噪声比; 插图为测得的原始布里渊增益谱

    Figure 3.  Normalized chaotic BGSs and SBR analysis of these, under different modulation modes. Inset view: the measured original BGSs, corresponding to the main view.

    图 4  不同调制方式下的动态应变测量结果 (a) EOM调制系统动态应变测量时序及正弦拟合曲线; (b) GS调制系统动态应变测量时序及正弦拟合曲线; (c)两种调制方式下的动态应变测量误差, 插图为单次测量典型结果; (d)两种调制方式下的动态应变频率

    Figure 4.  The results of dynamic strain measurement under different modulation modes: (a) Time series and sine fitting curve of dynamic strain in EOM modulation system; (b) time series and sine fitting curve of dynamic strain in GS modulation system; (c) measurement error of dynamic strain under two modulation modes, inset view is the typical result of a single measurement; (d) vibration frequency under two modulation modes.

    图 5  双斜坡辅助技术原理示意图 (a)布里渊增益比的理论分析; (b)布里渊增益比实验标定的理论模型

    Figure 5.  Principle of DSA method: (a) theoretical analysis of ${R_{\rm{B}}}$; (b) theoretical model for experimentally calibrating ${R_{\rm{B}}}$.

    图 6  双斜坡辅助系统的增益比-应变转换系数 (a)不同大小准静态应变对应的增益比曲线; (b)根据线性拟合曲线计算的转换系数

    Figure 6.  Estimate of the conversion coefficient, ${C_{\rm{s}}}$, between the strain value and ${R_{\rm{B}}}$ in DSA system: (a) The ${R_{\rm{B}}}$ curves under different quasi-static strain; (b) final coefficient calculated from the linear fitted curve.

    图 7  双斜坡辅助技术消除泵浦功率波动影响的验证实验 (a)手动施加泵浦光功率波动时利用单斜坡辅助技术测得的动态应变响应时序; (b)双斜坡辅助技术解调的动态应变大小

    Figure 7.  The verification experiment of pump-power-independent measurement by using DSA method: (a) Measured Brillouin amplitude using SSA method when a dynamic strain is applied with a manual change of pump power; (b) measured dynamic strain using DSA method.

    图 8  施加0−800 με时的双斜坡辅助系统动态应变测量结果 (a)动态应变测量时序及正弦拟合曲线; (b)动态应变测量误差, 插图为单次测量典型结果; (c)动态应变振动频率

    Figure 8.  Measurement results of DSA system when a dynamic strain of 0−800 με is applied: (a) Measured time trace and sine-fitted curve; (b) measurement error, inset view is the typical result of a single measurement; (c) vibration frequency.

  • [1]

    Bao X Y, Chen L 2011 Sensors 11 4152Google Scholar

    [2]

    刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar

    Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li Z H 2017 Acta Phys. Sin. 66 070705Google Scholar

    [3]

    饶云江 2017 物理学报 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [4]

    胡鑫鑫, 王亚辉, 赵乐, 张倩, 张明江, 张建忠, 乔丽君, 王涛, 高少华 2021 中国激光 48 0100001Google Scholar

    Hu X X, Wang Y H, Zhao L, Zhang Q, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao S H 2021 Chin. J. Lasers 48 0100001Google Scholar

    [5]

    朱涛, 郑华, 张敬栋 2020 应用科学学报 38 197Google Scholar

    Zhu T, Zheng H, Zhang J D 2020 J. Appl. Sci. 38 197Google Scholar

    [6]

    周登望, 王本章, 巴德欣, 徐金龙, 徐鹏柏, 姜桃飞, 张东昱, 李惠, 董永康 2018 光学学报 38 0328005Google Scholar

    Zhou D W, Wang B Z, Ba D X, Xu J L, Xu P B, Jiang T F, Zhang D Y, Li H, Dong Y K 2018 Acta Opt. Sin. 38 0328005Google Scholar

    [7]

    Voskoboinik A, Yilmaz O, Willner A, Tur M 2011 Opt. Express 19 B842Google Scholar

    [8]

    Peled Y, Motil A, Tur M 2012 Opt. Express 20 8584Google Scholar

    [9]

    Zhou D W, Dong Y K, Wang B Z, Pang C, Ba D X, Zhang H Y, Lu Z W, Li H, Bao X Y 2018 Light Sci. Appl. 7 32Google Scholar

    [10]

    Zhang C Y, Kishi M, Hotate K 2015 Appl. Phys. Express 8 042501Google Scholar

    [11]

    Wang B, Fan X Y, Fu Y X, He Z Y 2018 Opt. Express 26 6916Google Scholar

    [12]

    Bernini R, Minardo A, Zeni L 2009 Opt. Lett. 34 2613Google Scholar

    [13]

    Peled Y, Motil A, Yaron L, Tur M 2011 Opt. Express 19 19845Google Scholar

    [14]

    Yang G Y, Fan X Y, He Z Y 2017 J. Lightwave Technol. 35 4451Google Scholar

    [15]

    Yang G Y, Fan X Y, Wang B, He Z Y 2018 Opt. Express 26 32599Google Scholar

    [16]

    Motil A, Danon O, Peled Y, Tur M 2014 IEEE Photonics Technol. Lett. 26 797Google Scholar

    [17]

    Ba D X, Wang B Z, Zhou D W, Yin M J, Dong Y K, Li H, Lu Z W, Fan Z G 2016 Opt. Express 24 9781Google Scholar

    [18]

    Zheng H, Feng D Q, Zhang J D, Zhu T, Bai Y Z, Qu D R, Huang X B, Qiu F 2019 Opt. Lett. 44 1245Google Scholar

    [19]

    Wang B, Fan X, Fu Y X, He Z 2019 J. Lightwave Technol. 37 4573Google Scholar

    [20]

    Wang Y H, Zhao L, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao S H, Zhang Q, Wang Y C 2020 Opt. Lett. 45 1822Google Scholar

    [21]

    Zhao L, Wang Y H, Hu X X, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao S H, Himika A A 2020 Opt. Express 28 18189Google Scholar

    [22]

    Jeong J H, Lee K, Song K Y, Jeong J M, Lee S B 2011 Opt. Express 19 18721Google Scholar

    [23]

    Zhang J Z, Wang Y H, Zhang M J, Zhang Q, Li M W, Wu C Y, Qiao L J, Wang Y C 2018 Opt. Express 26 17597Google Scholar

    [24]

    Bai Q, Xue B, Gu H, Wang D, Wang Y , Zhang M J, Jin B Q, Wang Y C 2019 IEEE Photon. Technol. Lett. 31 283

    [25]

    Wang Y H, Zhang M J, Zhang J Z, Qiao L J, Wang T, Zhang Q, Zhao L, Wang Y C 2019 J. Lightwave Technol. 37 3706Google Scholar

    [26]

    张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐 2019 物理学报 68 104208Google Scholar

    Zhang Q, Wang Y H, Zhang M J, Zhang J Z, Qiao L J, Wang T, Zhao L 2019 Acta Phys. Sin. 68 104208Google Scholar

  • [1] Wang Wu-Yue, Yu Yu, Li Yun-Fei, Wang Gong, Li Kai, Wang Zhi-Yong, Song Chang-Yu, Li Sen-Sen, Li Yu-Hai, Liu Tong-Yu, Yan Xiu-Sheng, Wang Yu-Lei, Lü Zhi-Wei. Ridge-type suspended waveguide Brillouin laser. Acta Physica Sinica, 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [2] Ridge Type Suspended Waveguide Brillouin Laser(Optoelectronic Technology and Application ). Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211539
    [3] Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser. Acta Physica Sinica, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] Liu Qi, Li Pu, Kai Chao, Hu Chun-Qiang, Cai Qiang, Zhang Jian-Guo, Xu Bing-Jie. Short-time prediction of chaotic laser using time-delayed photonic reservoir computing. Acta Physica Sinica, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [5] Li Kun-Ying, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Liu Yi-Ming, Xu Bing-Jie, Wang Yun-Cai. Flat chaos generated by optical feedback multi-mode laser with filter. Acta Physica Sinica, 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [6] Dong Yong-Kang, Zhou Deng-Wang, Teng Lei, Jiang Tao-Fei, Chen Xi. Principle of Brillouin dynamic grating and its applications in optical fiber sensing. Acta Physica Sinica, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [7] Wang Long-Sheng, Zhao Tong, Wang Da-Ming, Wu Dan-Yu, Zhou Lei, Wu Jin, Liu Xin-Yu, Wang An-Bang. 14-Gb/s physical random numbers generated in real time by using multi-bit quantization of chaotic laser. Acta Physica Sinica, 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [8] Sun Yuan-Yuan, Li Pu, Guo Yan-Qiang, Guo Xiao-Min, Liu Xiang-Lian, Zhang Jian-Guo, Sang Lu-Xiao, Wang Yun-Cai. Chaotic laser-based ultrafast multi-bit physical random number generation without post-process. Acta Physica Sinica, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [9] Zhao Dong-Liang, Li Pu, Liu Xiang-Lian, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Wang Yun-Cai. Online real-time 7 Gbit/s physical random number generation utilizing chaotic laser pulses. Acta Physica Sinica, 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [10] Lan Dou-Dou, Guo Xiao-Min, Peng Chun-Sheng, Ji Yu-Lin, Liu Xiang-Lian, Li Pu, Guo Yan-Qiang. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation. Acta Physica Sinica, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [11] Li Pu, Jiang Lei, Sun Yuan-Yuan, Zhang Jian-Guo, Wang Yun-Cai. Study on real-time optical sampling of chaotic laser for all-optical physical random number generator. Acta Physica Sinica, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [12] Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe. Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback. Acta Physica Sinica, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [13] Liu Liu, Zheng Jian-Yu, Zhang Ming-Jiang, Meng Li-Na, Zhang Zhao-Xia, Wang Yun-Cai. Photonic generation and transmission of chaotic ultra wideband signals. Acta Physica Sinica, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [14] Xiao Bao-Jin, Hou Jia-Yin, Zhang Jian-Zhong, Xue Lu-Gang, Wang Yun-Cai. The effect of the relaxation oscillation frequency of chaotic semiconductor laser on the rate of random sequence. Acta Physica Sinica, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [15] Tang Xi, Wu Jia-Gui, Xia Guang-Qiong, Wu Zheng-Mao. 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers. Acta Physica Sinica, 2011, 60(11): 110509. doi: 10.7498/aps.60.110509
    [16] Chen Sha-Sha, Zhang Jian-Zhong, Yang Ling-Zhen, Liang Jun-Sheng, Wang Yun-Cai. One Gbit/s random bit generation based on chaotic laser. Acta Physica Sinica, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [17] Meng Li-Na, Zhang Ming-Jiang, Zheng Jian-Yu, Zhang Zhao-Xia, Wang Yun-Cai. Chaotic ultra-wideband microwave signal generation utilizing an optical injection chaotic laser diode. Acta Physica Sinica, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [18] Zhang Zhi-Yao, Zhou Xiao-Jun, Shi Sheng-Hui, Liang Rui. Analysis of pulse distortion in Brillouin slow light using broadband pump with rectangular spectrum. Acta Physica Sinica, 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [19] Wang Yu-Lei, Lü Zhi-Wei, Wang Shuang-Yi, Zheng Zhen-Xing, He Wei-Ming. Investigation on a four-beam serial laser combination for a non-collinear scheme based on Brillouin amplification. Acta Physica Sinica, 2009, 58(7): 4675-4679. doi: 10.7498/aps.58.4675
    [20] XU ZHI-ZHAN, LIN KANG-CHUN, QIAN AI-DI, ZHANG WEN-QI. STIMULATED BRILLOUIN SIDESCATTERING IN LASER-IRRADIATED PLASMAS. Acta Physica Sinica, 1985, 34(2): 188-195. doi: 10.7498/aps.34.188
Metrics
  • Abstract views:  5250
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2020
  • Accepted Date:  05 December 2020
  • Available Online:  11 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回