Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasma optical emission spectroscopy based on feedforward neural network

Wang Yan-Fei Zhu Xi-Ming Zhang Ming-Zhi Meng Sheng-Feng Jia Jun-Wei Chai Hao Wang Yang Ning Zhong-Xi

Citation:

Plasma optical emission spectroscopy based on feedforward neural network

Wang Yan-Fei, Zhu Xi-Ming, Zhang Ming-Zhi, Meng Sheng-Feng, Jia Jun-Wei, Chai Hao, Wang Yang, Ning Zhong-Xi
PDF
HTML
Get Citation
  • Optical emission spectroscopy (OES) has been widely applied to plasma etching, material processing, development of plasma equipment and technology, as well as plasma propulsion. The collisional-radiative model used in OES is affected by the deviation of fundamental data such as collision cross sections, thus leading to the error in diagnostic results. In this work, a novel method is developed based on feedforward neural network for OES. By comparing the error characteristics of the new method with those of the traditional least-square diagnostic method, it is found that the neural network diagnosis method can reduce the transmission of basic data deviation to the diagnosis results by identifying the characteristics of the spectral vector. This is confirmed by the experimental results. Finally, the mechanism of the neural network algorithm against fundamental data deviation is analyzed. This method also has a good application prospect in plasma parameter online monitoring, imaging monitoring and mass data processing.
      Corresponding author: Zhu Xi-Ming, zhuximing@hit.edu.cn ; Ning Zhong-Xi, ningzx@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775063), the Defense Industrial Technology Development Program, China (Grant No. JCKY2018203B029), and the Defense Industrial Metering Program, China (Grant No. JSJL2016203B017)
    [1]

    Donnelly, Vincent M, Avinoam K 2013 J. Vac. Sci. Technol., A 31 050825Google Scholar

    [2]

    曲鹏程, 唐代飞, 向鹏飞, 袁安波 2017 电子科技 30 153Google Scholar

    Qu P C, Tang D F, Xiang P F, Yuan A B 2017 Electr. Sci. Technol. 30 153Google Scholar

    [3]

    Edy R, Huang G S, Zhao Y T, Guo Y, Zhang J, Mei Y F, Shi J J 2017 Surf. Coat. Technol. 329 149Google Scholar

    [4]

    王巍, 叶甜春, 李兵, 陈大鹏, 刘明 2005 半导体技术 30 13Google Scholar

    Wang W, Ye T C, Li B, Chen D P, Liu M 2005 Semiconductor Technol. 30 13Google Scholar

    [5]

    王巍, 王玉青, 孙江宏, 兰中文, 龚云贵 2008 红外与激光工程 4 748Google Scholar

    Wang W, Wang Y Q, Sun J H, Lan Z W, Gong Y G 2008 Infrared Laser Eng. 4 748Google Scholar

    [6]

    Sridhar S, Donnelly V M, Liu L, Economou D J 2016 J. Vac. Sci. Technol., A 34 061303Google Scholar

    [7]

    Gao J, Zhou L, Liang J, Wang Z, Wu Y, Muhammad J, Dong X, Li S, Yu H, Quan X 2018 Nano Res. 11 1470Google Scholar

    [8]

    Kyung K, Winderbaum S, Hameiri Z 2017 Surf. Coat. Technol. 328 204Google Scholar

    [9]

    Yang J, Yokota S, Kaneko R, Komurasaki K 2010 Phys. Plasmas 17 103504Google Scholar

    [10]

    Zhu X M, Wang Y F, Wang Y, Yu D R, Zatsarinny O, Bartschat K, Tsankov T V, Czarnetzki U 2019 Plasma Sources Sci. Technol. 28 105005Google Scholar

    [11]

    Donnelly V M 2004 J. Phys. D: Appl. Phys. 3 7

    [12]

    Stafford L, Khare R, Donnelly V M, Margot J, Moisan M 2009 Appl. Phys. Lett. 94 021503Google Scholar

    [13]

    Wang Q, Koleva I, Donnelly V M, Economou D J 2005 J. Phys. D: Appl. Phys. 38 1690Google Scholar

    [14]

    Huang X J, Zhang J, Guo Y, Zhang J, Shi J J 2014 IEEE Trans. Plasma Sci. 42 3569Google Scholar

    [15]

    孙殿平 2008 博士学位论文 (上海: 华东师范大学)

    Sun D P 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)

    [16]

    刘冲, 何湘, 朱卫华 2016 光谱学与光谱分析 S1 469

    Liu C, He X, Zhu W H 2016 Spectrosc. Spect. Anal. S1 469

    [17]

    Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204

    [18]

    Zhu X M, Pu Y K 2010 J Phys. D: Appl. Phys. 43 403001Google Scholar

    [19]

    Zhu X M, Chen W C, Li J, Cheng Z W, Pu Y K 2012 Plasma Sources Sci. Technol. 21 045009Google Scholar

    [20]

    Boffard J B, Lin C C, DeJoseph C A 2004 J. Phys. D: Appl. Phys. 37 R 37 R143Google Scholar

    [21]

    Sadeghi N, Setser D W 2001 J. Chem. Phys. 115 3144

    [22]

    Weber T, Boffard J B, Lin C C 2003 Phys. Rev. A 68 032719Google Scholar

    [23]

    Sharma L, Srivastava R, Stauffer A D 2011 Eur. Phys. J. D 62 399Google Scholar

    [24]

    Zatsarinny O, Bartschat K 2013 J. Phys. B: At. Mol. Opt. 46 112001Google Scholar

    [25]

    Bray I, Fursa D, Kadyrov A, Stelbovicsa A T, Kheifets A S, Mukhamedzhanov A M 2012 Phys. Rep. 520 135Google Scholar

    [26]

    Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Chin. Phys. Lett. 31 033401Google Scholar

    [27]

    Boffard J B, Jung R O, Lin C C, Wendt A E 2009 Plasma Sources Sci. Technol. 18 035017Google Scholar

    [28]

    Boffard J B, Jung R O, Lin C C, Wendt A E 2010 Plasma Sources Sci. Technol. 19 065001Google Scholar

    [29]

    Terzi M, Masiero C, Beghi A, Maggipinto M, Susto G A 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry Modena, Italy, September 11−13, 2017 p17244916

    [30]

    Wang C Y, Hsu C C 2019 Plasma Sources Sci. Technol. 28 105013Google Scholar

    [31]

    康志伟, 刘拓, 刘劲, 马辛, 陈晓 2020 物理学报 69 069701Google Scholar

    Kang Z W, Liu T, Liu J, Ma X, Chen X 2020 Acta Phys. Sin. 69 069701Google Scholar

    [32]

    丁刚, 钟诗胜 2007 物理学报 2 1224Google Scholar

    Ding G, Zhong S S 2007 Acta Phys. Sin. 2 1224Google Scholar

    [33]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [34]

    彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 物理学报 68 130701Google Scholar

    Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lv D S 2019 Acta Phys. Sin. 68 130701Google Scholar

    [35]

    王鹏举, 范俊宇, 苏艳, 赵纪军 2020 物理学报 69 238702

    Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702

    [36]

    彭相洲, 陈雨 2020 计算机应用研究 37 47

    Peng X Z, Chen Y 2020 Appl. Res. Com. 37 47 (in Chinese)

    [37]

    孟圣峰 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Meng S F 2019 M. S. Thesis (Harbin: Harbin Institute of Technology)(in Chinese)

    [38]

    Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002Google Scholar

    [39]

    Abdollah S, Nikiforov A Y, Leys C 2010 Phys. Plasmas 17 063504Google Scholar

    [40]

    Zhu X M, Chen W C, Li J, Pu Y K 2008 J. Phys. D: Appl. Phys. 42 025203

  • 图 1  考夫曼电离室结构及测量实验方案

    Figure 1.  Structure of the Kaufmann discharge chamber and the scheme of measurement.

    图 2  基于最小二乘的光谱诊断方法流程

    Figure 2.  Diagram of optical emission spectroscopy based on least square method.

    图 3  基于前馈神经网络的光谱诊断方法流程

    Figure 3.  Diagram of optical emission spectroscopy based on feedforward neural network.

    图 4  误差半径及偏心距定义(真实值)

    Figure 4.  Definition of error radius and eccentricity.

    图 5  使用不同网络结构和数据正规化方法获得的均方误差随迭代次数的变化

    Figure 5.  Variation of mean square error with the number of iterations using different network structures and data normalization methods.

    图 6  网络预测结果与训练目标的对应关系 (a)电子温度的对应关系; (b)电子密度的对应关系; (c)电子温度的预测误差; (d)电子密度的预测误差

    Figure 6.  Corresponding relationship between the network prediction result and the training target: (a) Corresponding relationship of the electron temperature; (b) corresponding relationship of the electron density; (c) prediction error of the electron temperature; (d) prediction error of the electron density.

    图 7  使用最小二乘方法获得的拟合结果(为保证图的可读性, 对离子谱线强度进行了放大处理, 并将拟合所得光谱的波长进行了偏置)

    Figure 7.  Fitting results obtained by the least square method (in order to improve the readability of the image, the intensity of the ion spectral line is amplified, and a bias is introduced into the wavelength of the fitting spectrum).

    图 8  (a)最小二乘方法诊断结果的平均误差半径; (b) 神经网络方法诊断结果的平均误差半径

    Figure 8.  (a) Average error radius of the diagnosis result of the least square method; (b) average error radius of the diagnosis result of the neural network method.

    图 9  (a)最小二乘方法诊断结果的最大误差半径; (b) 神经网络方法诊断结果的最大误差半径

    Figure 9.  (a) The maximum error radius of the diagnosis result of the least square method; (b) the maximum error radius of the diagnosis result of the neural network method.

    图 10  (a)最小二乘方法结果的偏心距; (b) 神经网络方法结果的偏心距

    Figure 10.  (a) Eccentricity of the diagnosis result of the least square method; (b) the eccentricity of the diagnosis result of the neural network method.

    图 11  (a)考夫曼离子源中电子密度的诊断结果; (b)考夫曼离子源中电子温度的诊断结果; (c)最小二乘方法和神经网络方法获得的电子密度结果的相对误差; (d)最小二乘方法和神经网络方法获得的电子温度结果的相对误差. “探针”、“最小二乘”和“神经网络”分别表示由朗缪尔探针、最小二乘方法和神经网络方法获得的诊断结果

    Figure 11.  (a) Diagnostic results of ne in Kaufman ion source; (b) diagnostic results of Te in Kaufman ion source; (c) relative error of ne by least-square method and neural network method; (d) relative error of Te by least-square method and neural network method. “探针”, “最小二乘”, “神经网络” denotes the diagnostic results obtained by Langmuir probe, least-square diagnostic method and neural network diagnostic method, respectively.

    表 1  本文研究中选用的氙谱线表

    Table 1.  Xenon spectral lines used in this work.

    序号波长/nm上能级序号波长/nm上能级
    1460.3035p4(3P2)6p $ {}^{2}{\left[1\right]}_{3/2}^\circ $9834.7455p5($ {}^{2}{\mathrm{P}}_{1/2}^\circ $)6p 2[3/2]2
    2484.4335p4(3P2)6p $ {}^{2}{\left[3\right]}_{7/2}^\circ $10840.9195p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]1
    3492.1485p4(3P1)6p $ {}^{2}{\left[2\right]}_{5/2}^\circ $11881.9415p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]3
    4529.2225p4(3P2)6p $ {}^{2}{\left[2\right]}_{5/2}^\circ $12895.2255p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]2
    5541.9155p4(3P2)6p $ {}^{2}{\left[3\right]}_{5/2}^\circ $13904.5455p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]2
    6788.7395p5(21/2)6p 2[1/2]014916.2655p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[3/2]1
    7823.1635p5(23/2)6p 2[3/2]215979.9705p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[1/2]1
    8828.0125p5(23/2)6p 2[1/2]016992.3205p5($ {}^{2}{\mathrm{P}}_{3/2}^\circ $)6p 2[5/2]2
    DownLoad: CSV
  • [1]

    Donnelly, Vincent M, Avinoam K 2013 J. Vac. Sci. Technol., A 31 050825Google Scholar

    [2]

    曲鹏程, 唐代飞, 向鹏飞, 袁安波 2017 电子科技 30 153Google Scholar

    Qu P C, Tang D F, Xiang P F, Yuan A B 2017 Electr. Sci. Technol. 30 153Google Scholar

    [3]

    Edy R, Huang G S, Zhao Y T, Guo Y, Zhang J, Mei Y F, Shi J J 2017 Surf. Coat. Technol. 329 149Google Scholar

    [4]

    王巍, 叶甜春, 李兵, 陈大鹏, 刘明 2005 半导体技术 30 13Google Scholar

    Wang W, Ye T C, Li B, Chen D P, Liu M 2005 Semiconductor Technol. 30 13Google Scholar

    [5]

    王巍, 王玉青, 孙江宏, 兰中文, 龚云贵 2008 红外与激光工程 4 748Google Scholar

    Wang W, Wang Y Q, Sun J H, Lan Z W, Gong Y G 2008 Infrared Laser Eng. 4 748Google Scholar

    [6]

    Sridhar S, Donnelly V M, Liu L, Economou D J 2016 J. Vac. Sci. Technol., A 34 061303Google Scholar

    [7]

    Gao J, Zhou L, Liang J, Wang Z, Wu Y, Muhammad J, Dong X, Li S, Yu H, Quan X 2018 Nano Res. 11 1470Google Scholar

    [8]

    Kyung K, Winderbaum S, Hameiri Z 2017 Surf. Coat. Technol. 328 204Google Scholar

    [9]

    Yang J, Yokota S, Kaneko R, Komurasaki K 2010 Phys. Plasmas 17 103504Google Scholar

    [10]

    Zhu X M, Wang Y F, Wang Y, Yu D R, Zatsarinny O, Bartschat K, Tsankov T V, Czarnetzki U 2019 Plasma Sources Sci. Technol. 28 105005Google Scholar

    [11]

    Donnelly V M 2004 J. Phys. D: Appl. Phys. 3 7

    [12]

    Stafford L, Khare R, Donnelly V M, Margot J, Moisan M 2009 Appl. Phys. Lett. 94 021503Google Scholar

    [13]

    Wang Q, Koleva I, Donnelly V M, Economou D J 2005 J. Phys. D: Appl. Phys. 38 1690Google Scholar

    [14]

    Huang X J, Zhang J, Guo Y, Zhang J, Shi J J 2014 IEEE Trans. Plasma Sci. 42 3569Google Scholar

    [15]

    孙殿平 2008 博士学位论文 (上海: 华东师范大学)

    Sun D P 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese)

    [16]

    刘冲, 何湘, 朱卫华 2016 光谱学与光谱分析 S1 469

    Liu C, He X, Zhu W H 2016 Spectrosc. Spect. Anal. S1 469

    [17]

    Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204

    [18]

    Zhu X M, Pu Y K 2010 J Phys. D: Appl. Phys. 43 403001Google Scholar

    [19]

    Zhu X M, Chen W C, Li J, Cheng Z W, Pu Y K 2012 Plasma Sources Sci. Technol. 21 045009Google Scholar

    [20]

    Boffard J B, Lin C C, DeJoseph C A 2004 J. Phys. D: Appl. Phys. 37 R 37 R143Google Scholar

    [21]

    Sadeghi N, Setser D W 2001 J. Chem. Phys. 115 3144

    [22]

    Weber T, Boffard J B, Lin C C 2003 Phys. Rev. A 68 032719Google Scholar

    [23]

    Sharma L, Srivastava R, Stauffer A D 2011 Eur. Phys. J. D 62 399Google Scholar

    [24]

    Zatsarinny O, Bartschat K 2013 J. Phys. B: At. Mol. Opt. 46 112001Google Scholar

    [25]

    Bray I, Fursa D, Kadyrov A, Stelbovicsa A T, Kheifets A S, Mukhamedzhanov A M 2012 Phys. Rep. 520 135Google Scholar

    [26]

    Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Chin. Phys. Lett. 31 033401Google Scholar

    [27]

    Boffard J B, Jung R O, Lin C C, Wendt A E 2009 Plasma Sources Sci. Technol. 18 035017Google Scholar

    [28]

    Boffard J B, Jung R O, Lin C C, Wendt A E 2010 Plasma Sources Sci. Technol. 19 065001Google Scholar

    [29]

    Terzi M, Masiero C, Beghi A, Maggipinto M, Susto G A 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry Modena, Italy, September 11−13, 2017 p17244916

    [30]

    Wang C Y, Hsu C C 2019 Plasma Sources Sci. Technol. 28 105013Google Scholar

    [31]

    康志伟, 刘拓, 刘劲, 马辛, 陈晓 2020 物理学报 69 069701Google Scholar

    Kang Z W, Liu T, Liu J, Ma X, Chen X 2020 Acta Phys. Sin. 69 069701Google Scholar

    [32]

    丁刚, 钟诗胜 2007 物理学报 2 1224Google Scholar

    Ding G, Zhong S S 2007 Acta Phys. Sin. 2 1224Google Scholar

    [33]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [34]

    彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 物理学报 68 130701Google Scholar

    Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lv D S 2019 Acta Phys. Sin. 68 130701Google Scholar

    [35]

    王鹏举, 范俊宇, 苏艳, 赵纪军 2020 物理学报 69 238702

    Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702

    [36]

    彭相洲, 陈雨 2020 计算机应用研究 37 47

    Peng X Z, Chen Y 2020 Appl. Res. Com. 37 47 (in Chinese)

    [37]

    孟圣峰 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Meng S F 2019 M. S. Thesis (Harbin: Harbin Institute of Technology)(in Chinese)

    [38]

    Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002Google Scholar

    [39]

    Abdollah S, Nikiforov A Y, Leys C 2010 Phys. Plasmas 17 063504Google Scholar

    [40]

    Zhu X M, Chen W C, Li J, Pu Y K 2008 J. Phys. D: Appl. Phys. 42 025203

  • [1] Fang Ze, Pan Yong-Quan, Dai Dong, Zhang Jun-Bo. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation. Acta Physica Sinica, 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [2] Wang Jun-Wu, Xuan Hong-Wen, Yu Hang-Hang, Wang Xin-Bing, Vassily S. Zakharov. Simulation of extreme ultraviolet radiation of laser induced discharge plasma. Acta Physica Sinica, 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [3] Xie Zhuo, Wen Zhi-Lin, Si Ming-Qi, Dou Yin-Ping, Song Xiao-Wei, Lin Jing-Quan. Characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [4] Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma. Acta Physica Sinica, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [5] The characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211450
    [6] Han Xiao-Ying, Li Ling-Xiao, Dai Zhen-Sheng, Zheng Wu-Di, Gu Pei-Jun, Wu Ze-Qing. A general model for rapid simulation of hot dense plasmas under non-local thermal equilibrium conditions. Acta Physica Sinica, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [7] Zhang Tai-Yang, Chen Ran. A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak. Acta Physica Sinica, 2017, 66(12): 125201. doi: 10.7498/aps.66.125201
    [8] Wu Jian, Li Xing-Wen, Li Mo, Yang Ze-Feng, Shi Zong-Qian, Jia Shen-Li, Qiu Ai-Ci. Comparisons and analyses of the aluminum K-shell spectroscopic models. Acta Physica Sinica, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [9] Xie Hui-Qiao, Tan Yi, Liu Yang-Qing, Wang Wen-Hao, Gao Zhe. A collisional-radiative model for the helium plasma in the sino-united spherical tokamak and its application to the line intensity ratio diagnostic. Acta Physica Sinica, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [10] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [11] Li Pan-Chi, Wang Hai-Ying, Dai Qing, Xiao Hong. Quantum process neural networks model algorithm and applications. Acta Physica Sinica, 2012, 61(16): 160303. doi: 10.7498/aps.61.160303
    [12] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [13] Yu Xin-Ming, Cheng Shu-Bo, Yi You-Gen, Zhang Ji-Yan, Pu Yu-Dong, Zhao Yang, Hu Feng, Yang Jia-Min, Zheng Zhi-Jian. Analysis of formation mechanism of Li-like satellites in aluminum plasma and experimental application. Acta Physica Sinica, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [14] Li Jing, Xie Wei-Ping, Huang Xian-Bin, Yang Li-Bing, Cai Hong-Chun, Pu Yi-Kang. Application of a collisinal-radiative model for the analysis of K-shell line spectra emitted by Z-pinch plasma. Acta Physica Sinica, 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [15] Duan Yao-Yong, Guo Yong-Hui, Qiu Ai-Ci, Wu Gang. An extended model for ion charge state distribution of plasmas in collisional radiative steady state. Acta Physica Sinica, 2010, 59(8): 5588-5595. doi: 10.7498/aps.59.5588
    [16] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [17] Zhang Hong, Cheng Xin-Lu, Yang Xiang-Dong, Xie Fang-Jun, Zhang Ji-Yan, Yang Guo-Hong. Study on the relationship of average ionization stage with the electron temperat ure for Au laser produced plasma. Acta Physica Sinica, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [18] MA YU-QIANG, ZHANG YUE-MING, GONG CHANG-DE. RETRIEVAL PROPERTIES OF HOPFIELD NEURAL NETWORK MODELS. Acta Physica Sinica, 1993, 42(8): 1356-1360. doi: 10.7498/aps.42.1356
    [19] ZHANG CHENG-FU. COMPARISION OF TWO COLLISION MODELS IN PLASMA. Acta Physica Sinica, 1986, 35(7): 947-952. doi: 10.7498/aps.35.947
    [20] CHANG TIE-QIANG. BREMSSTRAHLUNG IN PLASMAS. Acta Physica Sinica, 1982, 31(9): 1152-1165. doi: 10.7498/aps.31.1152
Metrics
  • Abstract views:  6589
  • PDF Downloads:  162
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2020
  • Accepted Date:  14 March 2021
  • Available Online:  26 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回