Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Room-temperature quantum anomalous Hall effect in monolayer BaPb with large magnetocrystalline anisotropy energies

Zhang Wei-Xi Li Yong Tian Chang-Hai She Yan-Chao

Citation:

Room-temperature quantum anomalous Hall effect in monolayer BaPb with large magnetocrystalline anisotropy energies

Zhang Wei-Xi, Li Yong, Tian Chang-Hai, She Yan-Chao
PDF
HTML
Get Citation
  • The quantum anomalous Hall effect is an intriguing quantum state that exhibits chiral edge states in the absence of a magnetic field. The chiral edge states are topologically protected and robust against electron scattering, which possesses great potential applications in designing low energy consumption and dissipation less spintronic devices. The experimental conditions are required to be very high, such as extremely low temperature (< 100 mK) due to the small band gap and the greatly accurate control of the extrinsic impurities. These greatly hinder their devices from being put into applications further. Hence, it would be meaningful to search for a new Chern insulator with a large band gap and high Curie temperature. According to the first-principles calculations, we predict the room temperature quantum anomalous Hall effect in the monolayer BaPb. The nontrivial topology of this new type of ferroelectric semi-metal material derives from fully spin-polarized quadratic non-Dirac bands. The quantum anomalous Hall effect can be realized in the monolayer BaPb with fully spin-polarized quadratic px,y non-Dirac bands with the nonzero Chern number (C = 1). Because of the trigonal symmetry of monolayer BaPb material, these bands composed of px,y orbitals are at the $ \varGamma $ point, which is different from the Dirac state formed by the pz orbital reported previously. In addition, it can still retain its original topological properties even if strongly hybridized with the substrate. The calculated phonon spectrum shows no imaginary frequency in the entire Brillouin zone, indicating that the monolayer BaPb system is dynamically stable. By using Monte Carlo simulation, we determine the Curie temperature of BaPb monolayer toreach up to 378 K. We also calculate the magnetic anisotropy energy of the BaPb cell, defined as $ \Delta E={E_{100}}-{E_{001}} $. Here, we consider two magnetization easy-axis directions, [100] and [001]. To our surprise, the MAE of monolayer BaPb is as high as 52.01 meV/cell by considering the spin-orbit coupling effect. Furthermore, the nontrivial band gap is opened with a magnitude of 177.39 meV when the spin-orbit coupling effect is included. The calculations of Berry curvature and edge states further prove that the monolayer BaPb system can realize the quantum anomalous Hall state. This discovery indicates that the monolayer BaPb materials can be used as a candidate for quantum anomalous Hall effect materials, thereby promoting the development of spintronics.
      Corresponding author: She Yan-Chao, ycshe@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12064038), the Scientific Research Program of Guizhou Province, China (Grant Nos. KY[2019]179, KY[2017]315, TK[2021] General projects -034), the Outstanding Young Science and Technology Talents of Guizhou Province, China (Grants No. [2019]5673), and the Science and Technology Foundation of Tongren Science and Technology Bureau, China (Grant No. [2020]77)
    [1]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Lwa K T, Ye J T 2015 Science 350 1353Google Scholar

    [2]

    Gong C, Zhang X 2019 Science 363 eaav4450

    [3]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895

    [4]

    高艺璇, 张礼智, 张余洋, 杜世萱 2018 物理学报 67 238101Google Scholar

    Gao Y X, Zhang L Z, Zhang Y Y, Du S X 2018 Acta Phys. Sin. 67 238101Google Scholar

    [5]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [6]

    孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 物理学报 70 027302

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302

    [7]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [8]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802Google Scholar

    [9]

    Zhang H, Lazo C, Blügel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802Google Scholar

    [10]

    Hu J, Zhu Z, Wu R 2015 Nano Lett. 15 2074Google Scholar

    [11]

    Li P, Li X, Zhao W, Chen H, Chen M X, Guo Z X, Feng J, Gong X G, MacDonald A H 2017 Nano Lett. 17 6195Google Scholar

    [12]

    Li P 2019 Phys. Chem. Chem. Phys. 21 6712Google Scholar

    [13]

    Onoda M, Nagaosa N 2003 Phys. Rev. Lett. 90 206601Google Scholar

    [14]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [15]

    Luo W, Xiang H 2015 Nano Lett. 15 3230Google Scholar

    [16]

    Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawaski M, Tokura Y 2014 Nat. Phys. 10 731Google Scholar

    [17]

    Bestwick A J, Fox E J, Kou X, Pan L, Wang K L, Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201Google Scholar

    [18]

    Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W, Moodera J S 2015 Nat. Mater. 14 473Google Scholar

    [19]

    Ou Y, Liu C, Jiang G, Feng Y, Zhao D, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C, Xue Q K 2018 Adv. Mater. 30 1703062Google Scholar

    [20]

    Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A, Chulkov E V 2019 Phys. Rev. Lett. 122 107202Google Scholar

    [21]

    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [22]

    Otrokov M M, Klimovskikh I I, Chulkov E V 2019 Nature 576 416Google Scholar

    [23]

    Wang S, Yu Z, Liu Y, Jiao Y, Guan S, Sheng X, Yang S A 2019 Phys. Rev. Materials 3 084201Google Scholar

    [24]

    Kong X, Li L, Leenaerts O, Wang W, Liu X, Peeters F M 2018 Nanoscale 10 8153Google Scholar

    [25]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [26]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [27]

    Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [28]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [29]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685Google Scholar

    [33]

    Wu Q S, Zhang S N, Song H F, Troyer M, Suluyanov A A 2018 Comput. Phys. Commun. 224 405Google Scholar

    [34]

    Zhuang H L, Henning R G 2013 Appl. Phys. Lett. 103 212102Google Scholar

    [35]

    Evans R F, Fan W J, Chureemart P, Ostler T A, Ellis M O, Chantrell R W 2014 J. Phys. Condens. Matter. 26 103202Google Scholar

    [36]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [37]

    Zhang R W, Zhang C W, Ji W X, Yan S S, Yao Y G 2017 Nanoscale 9 8207Google Scholar

    [38]

    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J, Claessen R 2017 Science 357 287Google Scholar

  • 图 1  (a) 单层BaPb的晶格结构; (b) 单层BaPb声子谱. 计算中使用一个4 × 4的超胞

    Figure 1.  (a) Lattice structure for monolayer BaPb; (b) the phonon dispersion curves monolayer BaPb. A 4 × 4 supercell is used in the calculation.

    图 2  单分子层BaPb的铁磁构型(a)和反铁磁构型(b); (c)利用蒙特卡罗模拟得到的单层BaPb的磁矩与温度的关系

    Figure 2.  Two magnetic configurations for monolayer BaPb: (a) Ferromagnetic; (b) antiferromagnetic. (c) The average magnetic moment per unit cell with respect to temperature calculated for monolayer BaPb obtained by using Monte Carlo simulations.

    图 3  单分子层BaPb的自旋极化能带结构

    Figure 3.  Spin-polarized band structure for monolayer BaPb.

    图 4  考虑SOC时单层BaPb的能带结构 (a) 磁矩平面内沿x方向; (b) 磁矩平面外沿z方向

    Figure 4.  Band structures (including SOC) for monolayer BaPb: (a) With magnetic moments oriented in-plane along x; (b) with magnetic moments oriented out of the plane (along z directions).

    图 5  (a) 反常霍尔电导率随费米能级移动的变化; (b) 动量空间中带有SOC的Berry曲率; (c) 计算得到的单层BaPb半无限片的边缘状态

    Figure 5.  (a) Anomalous Hall conductivity when the Fermi level is shifted around the original Fermi level; (b) the Berry curvature with SOC in the momentum space; (c) calculated edge state of a semi-infinite sheet for monolayer BaPb.

    图 6  (a), (b) h-BN/BaPb异质结(h-BN/BaPb)体系中单分子层BaPb的结构晶体结构的俯视图和侧视图; (c) h-BN/BaPb异质结自旋极化能带结构; (d) 考虑SOC效应时h-BN/BaPb异质结体系中单分子层BaPb的带结构(考虑SOC效应)

    Figure 6.  Crystal structure of monolayer BaPb in the h-BN/BaPb heterostructure system: (a) Top and (b) side views. Here, the black solid lines denote the unit cell. (c) Spin-polarized band structure of h-BN/BaPb heterostructure; (d) the band structures (including SOC) of monolayer BaPb in the h-BN/BaPb heterostructure system.

    图 7  利用蒙特卡罗模拟得到的h-BN/BaPb异质结的磁矩与温度的关系

    Figure 7.  Average magnetic moment per unit cell with respect to temperature calculated for the h-BN/BaPb heterojunction obtained by using Monte Carlo simulation.

  • [1]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Lwa K T, Ye J T 2015 Science 350 1353Google Scholar

    [2]

    Gong C, Zhang X 2019 Science 363 eaav4450

    [3]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895

    [4]

    高艺璇, 张礼智, 张余洋, 杜世萱 2018 物理学报 67 238101Google Scholar

    Gao Y X, Zhang L Z, Zhang Y Y, Du S X 2018 Acta Phys. Sin. 67 238101Google Scholar

    [5]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [6]

    孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 物理学报 70 027302

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302

    [7]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [8]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802Google Scholar

    [9]

    Zhang H, Lazo C, Blügel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802Google Scholar

    [10]

    Hu J, Zhu Z, Wu R 2015 Nano Lett. 15 2074Google Scholar

    [11]

    Li P, Li X, Zhao W, Chen H, Chen M X, Guo Z X, Feng J, Gong X G, MacDonald A H 2017 Nano Lett. 17 6195Google Scholar

    [12]

    Li P 2019 Phys. Chem. Chem. Phys. 21 6712Google Scholar

    [13]

    Onoda M, Nagaosa N 2003 Phys. Rev. Lett. 90 206601Google Scholar

    [14]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [15]

    Luo W, Xiang H 2015 Nano Lett. 15 3230Google Scholar

    [16]

    Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawaski M, Tokura Y 2014 Nat. Phys. 10 731Google Scholar

    [17]

    Bestwick A J, Fox E J, Kou X, Pan L, Wang K L, Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201Google Scholar

    [18]

    Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W, Moodera J S 2015 Nat. Mater. 14 473Google Scholar

    [19]

    Ou Y, Liu C, Jiang G, Feng Y, Zhao D, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C, Xue Q K 2018 Adv. Mater. 30 1703062Google Scholar

    [20]

    Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A, Chulkov E V 2019 Phys. Rev. Lett. 122 107202Google Scholar

    [21]

    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [22]

    Otrokov M M, Klimovskikh I I, Chulkov E V 2019 Nature 576 416Google Scholar

    [23]

    Wang S, Yu Z, Liu Y, Jiao Y, Guan S, Sheng X, Yang S A 2019 Phys. Rev. Materials 3 084201Google Scholar

    [24]

    Kong X, Li L, Leenaerts O, Wang W, Liu X, Peeters F M 2018 Nanoscale 10 8153Google Scholar

    [25]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [26]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [27]

    Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [28]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [29]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [32]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685Google Scholar

    [33]

    Wu Q S, Zhang S N, Song H F, Troyer M, Suluyanov A A 2018 Comput. Phys. Commun. 224 405Google Scholar

    [34]

    Zhuang H L, Henning R G 2013 Appl. Phys. Lett. 103 212102Google Scholar

    [35]

    Evans R F, Fan W J, Chureemart P, Ostler T A, Ellis M O, Chantrell R W 2014 J. Phys. Condens. Matter. 26 103202Google Scholar

    [36]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [37]

    Zhang R W, Zhang C W, Ji W X, Yan S S, Yao Y G 2017 Nanoscale 9 8207Google Scholar

    [38]

    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J, Claessen R 2017 Science 357 287Google Scholar

  • [1] Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man. First principle calculation of thermoelectric transport performances of new dual transition metal MXene. Acta Physica Sinica, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] Qin Wen-Jing, Xu Bo, Sun Bao-Zhen, Liu Gang. First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms. Acta Physica Sinica, 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [3] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [4] Wang Jing. Chiral Majorana fermion. Acta Physica Sinica, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [5] Liang Jin-Ling, Zhang Yun, Qiu Xiao-Yan, Wu Sheng-Yu, Luo Ya. First-principles study of Fe:Mg:LiTaO3 crystals. Acta Physica Sinica, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [6] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [7] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [8] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [9] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [10] Wang Ai-Ling, Wu Zhi-Min, Wang Cong, Hu Ai-Yuan, Zhao Ruo-Yu. First-priciples study on Mn-doped LiZnAs, a new diluted magnetic semiconductor. Acta Physica Sinica, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [11] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [12] Yang Li-Jian, Liu Bin, Gao Song-Wei, Chen Li-Jia. First-principles caculation and experimental study of metal magnetic memory effects. Acta Physica Sinica, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [13] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [14] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [15] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [16] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [17] Yang Yin-Tang, Wu Jun, Cai Yu-Rong, Ding Rui-Xue, Song Jiu-Xu, Shi Li-Chun. First principles investigation on conductivity mechanism of p-type K:ZnO. Acta Physica Sinica, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [18] Zhang Jin-Kui, Deng Sheng-Hua, Jin Hui, Liu Yue-Lin. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Physica Sinica, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [19] Ding Shao-Feng, Fan Guang-Han, Li Shu-Ti, Xiao Bing. First-principles study of the p-type doped InN. Acta Physica Sinica, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [20] Yao Hong-Ying, Gu Xiao, Ji Min, Zhang Di-Er, Gong Xin-Gao. First-principles study of metal atoms adsorbed on SiO2 surface. Acta Physica Sinica, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
Metrics
  • Abstract views:  4821
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2021
  • Accepted Date:  17 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回