Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance analysis of thermoelectric system based on radiative cooling and greenhouse effects

Chen Hao Wang Cun-Hai Cheng Zi-Ming Wei Lin-Yang Wang Fu-Qiang Zhang Xin-Xin

Citation:

Performance analysis of thermoelectric system based on radiative cooling and greenhouse effects

Chen Hao, Wang Cun-Hai, Cheng Zi-Ming, Wei Lin-Yang, Wang Fu-Qiang, Zhang Xin-Xin
PDF
HTML
Get Citation
  • Electricity power has served as an essential source in our daily life. However, some remote areas that are difficult to be covered by the power grid, are still facing a serious shortage of electricity for outdoor equipment such as field monitors. Off-grid power is the alternative power in such areas, but there arise apparently economic and environmental problems. Therefore, the development of portable, pollution-free and sustainable power supply equipment has vital research significance. In this paper, based on the radiative cooling and greenhouse effects, a passive thermoelectric system without any active energy input is proposed. A square copper plate coated with a thin film of acrylic acid doped with SiO2 particles, with an average emissivity value of 0.937, is selected as a radiative cooling material. The commercial polyolefin film with a thickness of 0.12 mm is selected as a greenhouse material. The radiative cooling effect cools the cold end of the thermoelectric generator (TEG) during the nighttime, the greenhouse effect during the daytime is utilized to increase the temperature of the hot end of the TEG. The radiative cooling effect and the greenhouse effect both result in the increase of the temperature difference between the cold and hot ends, and thus obtaining the output power. During the period of time from June 17 to June 21, 2020, the performance of the designed system at the location of Shaanxi, China was evaluated experimentally, and the weather condition effects were also studied. The experimental results show that a stable temperature drop of ~1.1 ℃ of the cold end is achieved via the radiative cooling effect at night. Owing to the greenhouse effect, the temperature increase of the hot end reaches a maximum value of 13.9 ℃. When the average ambient humidity decreases from 45% to 20%, the average temperature difference between the hot end and cold end of the thermoelectric module increased from 1.6 to 1.9 ℃ throughout the day, and the average power increased from 47.8 to 67.3 mW/m2, indicating that the equipment can have better power generation performance under the condition of 20% ambient humidity. The device developed in this work realizes all-day passive output and shows that it has potential applications in off-grid power supplies.
      Corresponding author: Wang Cun-Hai, wangcunhai@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51906014) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-BD-20-09A)
    [1]

    Champier D 2017 Energy Convers. Manage. 140 167Google Scholar

    [2]

    He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y J, Dong J F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J M, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook S J, He J, Li J F, Zhao L D 2019 Science 365 1418Google Scholar

    [3]

    Kraemer D, Jie Q, Mcenaney K, Cao F, Liu W, Weinstein LA, Loomis J, Chen G 2016 Nat. Energy 1 1272

    [4]

    Rodrigo P M, Valera A, Fernández E F, Almonacid F M 2019 Appl. Energy 238 1150Google Scholar

    [5]

    Babu C, Ponnambalam P 2017 Energy Convers. Manage. 151 368Google Scholar

    [6]

    Lekbir A, Hassani S Ab, Ghani M R, Gan C K, Mekhilef S, Saidur R 2018 Energy Convers. Manage. 177 19Google Scholar

    [7]

    Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G 1975 Sol. Energy 17 83Google Scholar

    [8]

    Lin K T, Han J, Li K, Guob C, Lina H, Jia B 2021 Nano Energy 80 105517Google Scholar

    [9]

    Li Z, Chen Q, Song Y, Zhu B, Zhu J 2020 Adv. Mater. Technol. 5 1901007Google Scholar

    [10]

    Prakash B J, Jahar S, Pralay M 2020 Renewable Sustainable Energy Rev. 133 110263Google Scholar

    [11]

    刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星 2020 物理学报 69 036501Google Scholar

    Liu Y, Pan D, Chen W, Wang W Q, Shen H, Xu H X 2020 Acta Phys. Sin. 69 036501Google Scholar

    [12]

    刘士彦, 姚博, 谭永胜, 徐海涛, 冀婷, 方泽波 2017 物理学报 66 248801Google Scholar

    Liu S Y, Yao B, Tan Y S, Xu H T, Ji T, Fang Z B 2017 Acta Phys. Sin. 66 248801Google Scholar

    [13]

    于海童, 刘东, 杨震, 段远源 2018 物理学报 67 024209Google Scholar

    Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar

    [14]

    贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民 2017 物理学报 66 237801Google Scholar

    Jia B L, Deng L L, Chen R X, Zhang Y N, Fang X M 2017 Acta Phys. Sin. 66 237801Google Scholar

    [15]

    杜玮, 尹格, 马云贵 2020 物理学报 69 204203Google Scholar

    Du W, Yin G, Ma Y G 2020 Acta Phys. Sin. 69 204203Google Scholar

    [16]

    廖天军, 吕贻祥 2020 物理学报 69 057202Google Scholar

    Liao T J, Lü Y X 2020 Acta Phys. Sin. 69 057202Google Scholar

    [17]

    Fang H, Zhao D, Yuan J, Aili A, Yin X, Tan G 2019 Appl. Energy 248 589Google Scholar

    [18]

    Zhao D, Aili A, Yin X, Yang R 2019 Energy Build. 203 109453Google Scholar

    [19]

    Hosseinzadeh E, Taherian H 2012 Int. J. Green Energy 9 766Google Scholar

    [20]

    Cai L, Song Y A, Li W, Hsu P C, Lin D, Catrysse P B, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Cui Y 2018 Adv. Mater. 30 1802152Google Scholar

    [21]

    Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Cui Y 2019 Joule 3 1478Google Scholar

    [22]

    Song Y N, Li Y, Yan D X, Lei J, Li Z 2020 Composites Part A 130 105738Google Scholar

    [23]

    Zhu L, Raman A, Wang K X, Anoma M A, Fan S 2014 Optica 1 32Google Scholar

    [24]

    Safi T S, Munday J N 2015 Opt. Express 23 A1120Google Scholar

    [25]

    Li W, Dong M, Fan L, John J J, Chen Z, Fan S 2021 ACS Photonics 8 269

    [26]

    Zhan Z, ElKabbash M, Li Z, Li X, Zhang J, Rutledge J, Singh S, Guo C 2019 Nano Energy 65 104060Google Scholar

    [27]

    Raman P A, Li W, Fan S 2019 Joule 3 2679Google Scholar

    [28]

    Mu E, Wu Z, Wu Z, Chen X, Liu Y, Fu X, Hu Z 2019 Nano Energy 55 494Google Scholar

    [29]

    Rephaeli E, Raman A, Fan S 2013 Nano Lett. 13 1457Google Scholar

    [30]

    Raman1 A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540Google Scholar

    [31]

    Zhou K, Li W, Patel B B, Tao R, Chang Y, Fan S, Diao Y, Cai L 2021 Nano Lett. 21 1493Google Scholar

    [32]

    Li T, Gao Y, Zheng K, Ma Y, Ding D, Zhang H 2019 ES Energy Environ. 5 102

    [33]

    Zhang H, Ly K C, Liu X, Chen Z, Yan M, Wu Z, Wang X, Zheng Y, Zhou H, Fan T 2020 Proc. Natl. Acad. Sci. U. S. A. 117 14657Google Scholar

    [34]

    Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L 2019 Science 364 760Google Scholar

    [35]

    Chen S, Wang X, Nie G, Liu Q, Sui J, Song C, Zhu J, Fu J, Zhang J, Yan X, Long Y 2019 Chin. Phys. B 28 064401Google Scholar

    [36]

    Cheng Z, Wang F, Gong D, Liang H, Shuai Y 2020 Sol. Energy Mater. Sol. Cells 213 110563Google Scholar

    [37]

    Seebeck T 1826 Ann. Phys. 82 253Google Scholar

  • 图 1  基于辐射制冷-温室效应温差发电系统 (a)示意图; (b) 实物图

    Figure 1.  Thermoelectric system based on radiative cooling and greenhouse effects: (a) Sketch; (b) real setup.

    图 2  辐射制冷结构 (a) 实物图; (b) SiO2/丙烯酸薄膜的电子显微图; (c) 大气窗口范围内的光谱发射率

    Figure 2.  Radiative cooling structure: (a) The real structure; (b) the electron micrograph of the SiO2/acrylic film; (c) the spectral emissivity within the atmosphere window.

    图 3  (a) 2020年6月17日至18日热端温度、环境温度和温差的分布; (b) 6月18日8:00—12:00时间段内热端温度低于环境温度的数据点分布

    Figure 3.  (a) Distributions of the hot side temperature, ambient temperature, and the temperature difference during June 17–18, 2020; (b) data points at which the hot end temperature is lower than the ambient temperature during the time from 8:00 to 12:00 on the day of June 18, 2020.

    图 4  (a) 2020年6月19日至21日热电模块的冷热端温度和温差; (b) 热电模块冷热端温差在2020年6月20日12:00到17:00时间段内的分布

    Figure 4.  (a) Temperature of the hot and cold sides of the thermoelectric generator, as well as the temperature difference during June 19–21, 2020; (b) temperature difference between the time of 12:00 and 17:00 on June 20, 2020.

    图 5  不同环境湿度条件下温度对比 (a)冷热端温度分布; (b) 温差分布

    Figure 5.  Temperature comparisons under different ambient humidity: (a) Temperature of the cold and hot ends of the thermoelectric module; (b) temperature difference.

  • [1]

    Champier D 2017 Energy Convers. Manage. 140 167Google Scholar

    [2]

    He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao Y J, Dong J F, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song J M, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook S J, He J, Li J F, Zhao L D 2019 Science 365 1418Google Scholar

    [3]

    Kraemer D, Jie Q, Mcenaney K, Cao F, Liu W, Weinstein LA, Loomis J, Chen G 2016 Nat. Energy 1 1272

    [4]

    Rodrigo P M, Valera A, Fernández E F, Almonacid F M 2019 Appl. Energy 238 1150Google Scholar

    [5]

    Babu C, Ponnambalam P 2017 Energy Convers. Manage. 151 368Google Scholar

    [6]

    Lekbir A, Hassani S Ab, Ghani M R, Gan C K, Mekhilef S, Saidur R 2018 Energy Convers. Manage. 177 19Google Scholar

    [7]

    Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G 1975 Sol. Energy 17 83Google Scholar

    [8]

    Lin K T, Han J, Li K, Guob C, Lina H, Jia B 2021 Nano Energy 80 105517Google Scholar

    [9]

    Li Z, Chen Q, Song Y, Zhu B, Zhu J 2020 Adv. Mater. Technol. 5 1901007Google Scholar

    [10]

    Prakash B J, Jahar S, Pralay M 2020 Renewable Sustainable Energy Rev. 133 110263Google Scholar

    [11]

    刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星 2020 物理学报 69 036501Google Scholar

    Liu Y, Pan D, Chen W, Wang W Q, Shen H, Xu H X 2020 Acta Phys. Sin. 69 036501Google Scholar

    [12]

    刘士彦, 姚博, 谭永胜, 徐海涛, 冀婷, 方泽波 2017 物理学报 66 248801Google Scholar

    Liu S Y, Yao B, Tan Y S, Xu H T, Ji T, Fang Z B 2017 Acta Phys. Sin. 66 248801Google Scholar

    [13]

    于海童, 刘东, 杨震, 段远源 2018 物理学报 67 024209Google Scholar

    Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar

    [14]

    贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民 2017 物理学报 66 237801Google Scholar

    Jia B L, Deng L L, Chen R X, Zhang Y N, Fang X M 2017 Acta Phys. Sin. 66 237801Google Scholar

    [15]

    杜玮, 尹格, 马云贵 2020 物理学报 69 204203Google Scholar

    Du W, Yin G, Ma Y G 2020 Acta Phys. Sin. 69 204203Google Scholar

    [16]

    廖天军, 吕贻祥 2020 物理学报 69 057202Google Scholar

    Liao T J, Lü Y X 2020 Acta Phys. Sin. 69 057202Google Scholar

    [17]

    Fang H, Zhao D, Yuan J, Aili A, Yin X, Tan G 2019 Appl. Energy 248 589Google Scholar

    [18]

    Zhao D, Aili A, Yin X, Yang R 2019 Energy Build. 203 109453Google Scholar

    [19]

    Hosseinzadeh E, Taherian H 2012 Int. J. Green Energy 9 766Google Scholar

    [20]

    Cai L, Song Y A, Li W, Hsu P C, Lin D, Catrysse P B, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Cui Y 2018 Adv. Mater. 30 1802152Google Scholar

    [21]

    Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Cui Y 2019 Joule 3 1478Google Scholar

    [22]

    Song Y N, Li Y, Yan D X, Lei J, Li Z 2020 Composites Part A 130 105738Google Scholar

    [23]

    Zhu L, Raman A, Wang K X, Anoma M A, Fan S 2014 Optica 1 32Google Scholar

    [24]

    Safi T S, Munday J N 2015 Opt. Express 23 A1120Google Scholar

    [25]

    Li W, Dong M, Fan L, John J J, Chen Z, Fan S 2021 ACS Photonics 8 269

    [26]

    Zhan Z, ElKabbash M, Li Z, Li X, Zhang J, Rutledge J, Singh S, Guo C 2019 Nano Energy 65 104060Google Scholar

    [27]

    Raman P A, Li W, Fan S 2019 Joule 3 2679Google Scholar

    [28]

    Mu E, Wu Z, Wu Z, Chen X, Liu Y, Fu X, Hu Z 2019 Nano Energy 55 494Google Scholar

    [29]

    Rephaeli E, Raman A, Fan S 2013 Nano Lett. 13 1457Google Scholar

    [30]

    Raman1 A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540Google Scholar

    [31]

    Zhou K, Li W, Patel B B, Tao R, Chang Y, Fan S, Diao Y, Cai L 2021 Nano Lett. 21 1493Google Scholar

    [32]

    Li T, Gao Y, Zheng K, Ma Y, Ding D, Zhang H 2019 ES Energy Environ. 5 102

    [33]

    Zhang H, Ly K C, Liu X, Chen Z, Yan M, Wu Z, Wang X, Zheng Y, Zhou H, Fan T 2020 Proc. Natl. Acad. Sci. U. S. A. 117 14657Google Scholar

    [34]

    Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L 2019 Science 364 760Google Scholar

    [35]

    Chen S, Wang X, Nie G, Liu Q, Sui J, Song C, Zhu J, Fu J, Zhang J, Yan X, Long Y 2019 Chin. Phys. B 28 064401Google Scholar

    [36]

    Cheng Z, Wang F, Gong D, Liang H, Shuai Y 2020 Sol. Energy Mater. Sol. Cells 213 110563Google Scholar

    [37]

    Seebeck T 1826 Ann. Phys. 82 253Google Scholar

  • [1] Zheng Mao-Wen, Guo Hao-Wen, Wei Ling-Jiao, Pan Zi-Jie, Zou Jia-Run, Li Rui-Xin, Zhao Mi-Guang, Chen Hou-Lei, Liang Jing-Tao. Dilution refrigeration technology. Acta Physica Sinica, 2024, 73(23): 230701. doi: 10.7498/aps.73.20241211
    [2] Wang Yu-Xiao, Cheng Ze-Shuai, Jiang Ke-Yang, Wei Lin-Yang, Li Xiu-Ming. Performance of adjustable multilayer film based on radiation cooling and electrochromism. Acta Physica Sinica, 2024, 73(21): 214401. doi: 10.7498/aps.73.20240863
    [3] Yang Run-Heng, An Shun, Shang Wen, Deng Tao. Research progress of bio-inspired radiative cooling. Acta Physica Sinica, 2022, 71(2): 024401. doi: 10.7498/aps.71.20211854
    [4] Liu Yang, Pan Deng, Chen Wen, Wang Wen-Qiang, Shen Hao, Xu Hong-Xing. Radiative heat transfer in nanophotonics: From thermal radiation enhancement theory to radiative cooling applications. Acta Physica Sinica, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [5] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [6] Xu Qiang-Qiang, Ji Xu, Li Ming, Liu Jia-Xing, Li Hai-Li. Performances of thermoelectric module under solar Fresnel concentration. Acta Physica Sinica, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [7] Chang Song-Tao, Sun Zhi-Yuan, Zhang Yao-Yu, Zhu Wei. Internal stray radiation measurement for cooled infrared imaging systems. Acta Physica Sinica, 2015, 64(5): 050702. doi: 10.7498/aps.64.050702
    [8] Gao Xin-Qiang, Shen Jun, He Xiao-Nan, Tang Cheng-Chun, Dai Wei, Li Ke, Gong Mao-Qiong, Wu Jian-Feng. Numerical simulation of a hybrid magnetic refrigeration combined with high pressure Stirling regenerative refrigeration effect. Acta Physica Sinica, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [9] Wang Chang-Hong, Lin Tao, Zeng Zhi-Huan. Analysis and simulation of semiconductor thermoelectric power generation process. Acta Physica Sinica, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [10] Cheng Xiao-Fang, Xin Cheng-Yun, Wang Lu-Ping, Zhang Zhong-Zheng. The imaging effect in radiation measurement. Acta Physica Sinica, 2013, 62(12): 120702. doi: 10.7498/aps.62.120702
    [11] Liu Lei, Zhang Suo-Liang, Ma Ya-Kun, Wu Guo-Hao, Zheng Shu-Kai, Wang Yong-Qing. Modelling and structure optimization of flat-panel thermal concentrated solar thermoelectric device. Acta Physica Sinica, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [12] He Xian, He Ji-Zhou, Xiao Yu-Ling. A four-level quantum refrigeration cycle. Acta Physica Sinica, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [13] Wang Yong-Tian, Liu Zong-De, Yi Jun, Xue Zhi-Yong. The magnetocaloric effect of the Gd-based amorphous composite with Gd nanocrystals. Acta Physica Sinica, 2012, 61(5): 056102. doi: 10.7498/aps.61.056102
    [14] Jia You-Hua, Zhong Biao, Yin Jian-Ping. Fluorescence reabsorption analysis on laser cooling of Tm3+ doped ZrF4 -BaF2 -LaF3 -AlF3 -NaF-PbF2 glass. Acta Physica Sinica, 2011, 60(12): 124209. doi: 10.7498/aps.60.124209
    [15] Yang Zheng-Long, Liu Yong-Sheng, Gu Min-An, Yang Jing-Jing, Shi Qi-Guang, Gao Tian, Yang Jin-Huan. Design and thermodynamical analysis of a new refrigerator model driven by photovoltaic and thermoelectric power generation. Acta Physica Sinica, 2010, 59(10): 7368-7373. doi: 10.7498/aps.59.7368
    [16] Mao Bang-Ning, Pan Bai-Liang, Chen Gang, Xia Ting-Ting. Resonance radiation trapping in alkaline-earth metal atomic lasers. Acta Physica Sinica, 2006, 55(4): 1793-1797. doi: 10.7498/aps.55.1793
    [17] Han Peng, Jin Kui-Juan, Zhou Yue-Liang, Zhou Qing-Li, Wang Xu, Zhao Song-Qing, Ma Zhong-Shui. Opto-thermionic refrigeration of semiconductor heterostructure. Acta Physica Sinica, 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
    [18] QIN WEI-PING, ZHANG JIA-HUA, HUANG SHI-HUA. STUDY ON THE FLUORESCENT COOLING BY ENERGY TRANSFER WITHIN INHOMOGENOUS LINE SHAPE IN SOLIDS. Acta Physica Sinica, 1998, 47(8): 1397-1403. doi: 10.7498/aps.47.1397
    [19] LIU MEI, LIU WEI, CAO SHU, XING DIN-YU. HOT ELECTRON THERMOELECTRIC POWER UNDER A MICROWAVE FIELD. Acta Physica Sinica, 1995, 44(12): 1977-1983. doi: 10.7498/aps.44.1977
    [20] 较差脈流发电器. Acta Physica Sinica, 1935, 1(3): 68-78. doi: 10.7498/aps.1.68
Metrics
  • Abstract views:  5690
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2021
  • Accepted Date:  29 June 2021
  • Available Online:  19 October 2021
  • Published Online:  05 November 2021

/

返回文章
返回