Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical explanation of scanning tunneling spectrum of cleaved (110) surface of InGaAs

Dai Hao-Guang Zha Fang-Xing Chen Ping-Ping

Citation:

Theoretical explanation of scanning tunneling spectrum of cleaved (110) surface of InGaAs

Dai Hao-Guang, Zha Fang-Xing, Chen Ping-Ping
PDF
HTML
Get Citation
  • The cross-sectional (110) surface of In0.53Ga0.47As/InP hetero-structure grown by molecular beam epitaxy on an InP (001) substrate is characterized by the cross-sectional scanning tunneling microscopy (XSTM). The cleaved (110) surface across the interface between the In0.53Ga0.47As layer and InP layer is atomically flat but displays slight different image contrast between the two neighbor regions. The scanning tunneling spectroscopy (STS) is used to measure the current/voltage (I-V) spectra. The I-V data of the InGaAs surface and InP (110) surface show the different characteristics. The voltage range of zero-current plateau (apparent band gap) in the I-V spectrum of InP displays the values close to its energy band gaps whereas the plateau ranges in the spectra of In0.53Ga0.47As are by contrast generally 50% larger than the energy band gap of In0.53Ga0.47As. The above phenomenon implies the different physical pictures on the tunneling of two surfaces. In the case of InP, the flat band model is feasible since the band edge states existing in the InP (110) surface can prevent the surface from being affected by the tip –induced band bending (TIBB) effect. In contrast, the TIBB effect must be taken into account to explain the I-V spectra of the In0.53Ga0.47As (110) surface. A statistical analysis of the I-V data of In0.53Ga0.47As reveals that the width of current plateau in the I-V spectrum is generally between 1.05 eV and 1.20 eV and the current onset points (turn-points) with the plateau for the different spectra are slightly different from each other. We are able to explain quantitatively the above features based on the three-dimensional TIBB model given by Feenstra (2003 J. Vac. Sci. Technol. B 21 2080). Our calculation reveals that the parameter of density of surface states (DOSS) is a sensitive parameter responsible for the I-V features mentioned above. According to an appropriate assignment of the value of DOSS, which is generally taken in the scope of (0.8–3.0) × 1012 (cm2·eV)–1, we well predict both the width and the onset points of the current-plateau. Moreover, the model also reproduces the line-shapes of the I-V spectra measured on In0.53Ga0.47As.
      Corresponding author: Zha Fang-Xing, fxzha@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474073, 61874069)
    [1]

    Tian Z, Gan Y, Zhang T, Wang B, Ji H, Feng Y, Xue J 2019 Phys. Rev. B 100 085440Google Scholar

    [2]

    Lee D H, Gupta J A 2010 Science 330 1807Google Scholar

    [3]

    Wijnheijmer A P, Garleff J K, Teichmann K, Wenderoth M, Loth S, Ulbrich R G, Maksym P A, Roy M, Koenraad P M 2009 Phys. Rev. Lett. 102 166101Google Scholar

    [4]

    Timm R, Feenstra R M, Eisele H, Lenz A, Ivanova L, Lenz E, and Dähne M 2009 J. Appl. Phys 105 093718Google Scholar

    [5]

    Huang B C, Chiu Y P, Huang P C, Wang W C, Tra V T, Yang J C, He Q, Lin J Y, Chang C S, Chu Y H 2012 Phys. Rev. lett. 109 246807Google Scholar

    [6]

    Lin H, Lagoute J, Repain V, Chacon C, Girard Y, Lauret J -S, Ducastelle F, Loiseau A, Rousset S 2010 Nat. Mater. 9 235Google Scholar

    [7]

    Shao F, Zha F X, Pan B C, Shao J, Zhao X L, Shen X C 2014 Phys. Rev. B 89 085423Google Scholar

    [8]

    Feenstra R M 2003 J. Vac. Sci. Technol. B 21 2080Google Scholar

    [9]

    Feenstra R M 2009 Surf. Sci. 603 2841Google Scholar

    [10]

    Feenstra R M, Gaan S, Meyer G, Rieder K H 2005 Phys. Rev. B 71 125316Google Scholar

    [11]

    Dong Y, Feenstra R M, Semtsiv M P, Masselink W T 2008 J. Appl. Phys. 103 073704Google Scholar

    [12]

    Ishida N, Sueoka K, Feenstra R M 2009 Phys. Rev. B 80 075320Google Scholar

    [13]

    Rouvié A, Coussement J, Huet O, Truffer JP, Pozzi M, Oubensaid E H, Hamard S, Maillart P, Costard E 2014 Proc. of SPIE 9249 92490ZGoogle Scholar

    [14]

    Wen J, Wang W J, Chen X R, Li N, Chen X S, Lu W 2018 J. Appl. Phys. 123 161530Google Scholar

    [15]

    郑文龙, 张亚光, 顾溢, 李宝宝, 陈泽中, 陈平平 2019 红外与毫米波学报 38 1001

    Zheng W L, Zhang Y G, Gu Y, Li B B, Chen Z Z, Chen P P 2019 J. Infrared Millim. Waves 38 1001

    [16]

    Zha F X, Hong F, Pan B C, Wang Y, Shao J, Shen X C 2018 Phys. Rev. B 97 035401Google Scholar

    [17]

    Mikkelsen A, Lundgren E 2005 Prog. Surf. Sci. 80 1Google Scholar

    [18]

    Feenstra R M 1994 Phys. Rev. B 50 4561Google Scholar

    [19]

    Albrektsen O, Arent D J, Meier H P, Salemink H W M, 1990 Appl. Phys. Lett. 57 31Google Scholar

    [20]

    Newman N, Spicer W E, Kendelewicz T, Lindau I 1986 J. Vac. Sci. Technol. B 4 931Google Scholar

    [21]

    邓宗武, 郭伟民, 刘焕明, 曹立礼 1999 物理化学学报 15 303Google Scholar

    Deng Z W, Kwok Raymund W M, Lau Leo W M, Cao L L 1999 Acta Phys-Chim. Sin. 15 303Google Scholar

    [22]

    Kingston R H, Neustadter S F 1955 J. Appl. Phys 26 718Google Scholar

    [23]

    Seiwatz R, Green M 1958 J. Appl. Phys 29 1034Google Scholar

    [24]

    Jäger N D, Weber E R, Urban K, Ebert P H 2003 Phys. Rev. B 67 165327Google Scholar

    [25]

    Ivanova L, Borisova S, Eisele H, Dähne M, Laubsch A, Ebert P H 2008 Appl. Phys. Lett. 93 192110Google Scholar

  • 图 1  处于样品托中用于XSTM实验的样品照片

    Figure 1.  Photography of sample in the sample holder for the XSTM experiment.

    图 2  (a) InGaAs/InP异质结(110)解理面的STM形貌; (b)和(c)为InP和InGaAs(110)面的典型的I-V隧道谱给出的表观带隙测量结果; (d)和(e)分别为在InP和InGaAs(110)表面分别随机采样13和17条I-V谱线给出的表观带隙直方图统计结果

    Figure 2.  (a) STM topography of the cleaved (110) surface of InGaAs/InP hetero-structure; (b) and (c) are the typical I-V tunneling spectra of InP and InGaAs (110) surface, respectively; (d) and (e) are the statistical histograms of the apparent tunneling gaps with the sampling of 13 and 17 spectra on the (110) surfaces, respectively.

    图 3  平带模型的STM隧道结能带示意图 (a)正偏压; (b)负偏压; TIBB模型下的隧穿能带图 (c)正偏压; (d)负偏压.EC, EVEF分别是样品的导带、价带和费米能级, EF, tip是针尖的费米能级, Edefect表示缺陷态能级.

    Figure 3.  Schematic energy band diagram of STM tunneling junction with flat band model: (a) Positive sample bias; (b) negative sample bias; schematic energy band diagram of tunneling junction with the TIBB model: (c) positive sample bias; (d) negative sample bias. EC, EV and EF are the conduction band, valence band and Fermi level of the sample respectively, EF, tip is the Fermi level of the tip, and Edefect is the defect level.

    图 4  三维TIBB模型给出的InGaAs表面处带边电势能随所加样品偏压的变化关系, 不同颜色的实线对应于不同DOSS, 对应箭头所指为该态密度下计算得到的表观带隙, 优化的DOSS对应计算结果如红色实线所示

    Figure 4.  Variation of surface potential of InGaAs with the sample voltage calculated by the 3D TIBB model. The solid lines of different colors correspond to different DOSS, and the corresponding arrows indicate the calculated apparent tunneling gaps at the DOSS. The optimized calculation result is shown by the red line.

    图 5  (a) InGaAs的I-V谱的计算(红色虚线)结果与实验谱线(黑色实线)的对比; (b) 图(a)谱线在整个(–1.6 V, 1.6 V)电压范围对计算/实验对比结果的呈现

    Figure 5.  (a) Comparison of the I-V spectra between the calculated (red dashed line) and experimental (black solid line); (b) comparison of the spectra within the whole voltage range of (–1.6 V, 1.6 V).

    图 6  (a)—(d) InGaAs的四组I-V谱实验谱线(黑色实线)与模型计算(红色虚线)的比对, 各图中分别注明了计算时采用的表面态密度(DOSS)数值

    Figure 6.  (a)–(d) Comparison of four groups of experimental I-V spectra (black solid lines) with the corresponding calculated I-V spectra (red dashed line). The DOSS for each curve is indicated, respectively.

    表 1  InGaAs隧道谱特征参量的实验数据与TIBB模型计算的对比

    Table 1.  Comparison of experimental data and TIBB model calculations on the characteristic parameters of InGaAs tunneling spectra.

    The parameters of
    I-V spectra
    Apparent band gap/eVV–onset/VV+onset/V
    Experimental1.13–0.670.46
    Calculations
    with the
    density of surface
    states/(cm2·eV)–1
    01.25–0.890.36
    1.0 × 10111.29–0.890.40
    1.0 × 10121.21–0.750.46
    2.0 × 10121.11–0.660.45
    1.0 × 10130.90–0.490.41
    DownLoad: CSV
  • [1]

    Tian Z, Gan Y, Zhang T, Wang B, Ji H, Feng Y, Xue J 2019 Phys. Rev. B 100 085440Google Scholar

    [2]

    Lee D H, Gupta J A 2010 Science 330 1807Google Scholar

    [3]

    Wijnheijmer A P, Garleff J K, Teichmann K, Wenderoth M, Loth S, Ulbrich R G, Maksym P A, Roy M, Koenraad P M 2009 Phys. Rev. Lett. 102 166101Google Scholar

    [4]

    Timm R, Feenstra R M, Eisele H, Lenz A, Ivanova L, Lenz E, and Dähne M 2009 J. Appl. Phys 105 093718Google Scholar

    [5]

    Huang B C, Chiu Y P, Huang P C, Wang W C, Tra V T, Yang J C, He Q, Lin J Y, Chang C S, Chu Y H 2012 Phys. Rev. lett. 109 246807Google Scholar

    [6]

    Lin H, Lagoute J, Repain V, Chacon C, Girard Y, Lauret J -S, Ducastelle F, Loiseau A, Rousset S 2010 Nat. Mater. 9 235Google Scholar

    [7]

    Shao F, Zha F X, Pan B C, Shao J, Zhao X L, Shen X C 2014 Phys. Rev. B 89 085423Google Scholar

    [8]

    Feenstra R M 2003 J. Vac. Sci. Technol. B 21 2080Google Scholar

    [9]

    Feenstra R M 2009 Surf. Sci. 603 2841Google Scholar

    [10]

    Feenstra R M, Gaan S, Meyer G, Rieder K H 2005 Phys. Rev. B 71 125316Google Scholar

    [11]

    Dong Y, Feenstra R M, Semtsiv M P, Masselink W T 2008 J. Appl. Phys. 103 073704Google Scholar

    [12]

    Ishida N, Sueoka K, Feenstra R M 2009 Phys. Rev. B 80 075320Google Scholar

    [13]

    Rouvié A, Coussement J, Huet O, Truffer JP, Pozzi M, Oubensaid E H, Hamard S, Maillart P, Costard E 2014 Proc. of SPIE 9249 92490ZGoogle Scholar

    [14]

    Wen J, Wang W J, Chen X R, Li N, Chen X S, Lu W 2018 J. Appl. Phys. 123 161530Google Scholar

    [15]

    郑文龙, 张亚光, 顾溢, 李宝宝, 陈泽中, 陈平平 2019 红外与毫米波学报 38 1001

    Zheng W L, Zhang Y G, Gu Y, Li B B, Chen Z Z, Chen P P 2019 J. Infrared Millim. Waves 38 1001

    [16]

    Zha F X, Hong F, Pan B C, Wang Y, Shao J, Shen X C 2018 Phys. Rev. B 97 035401Google Scholar

    [17]

    Mikkelsen A, Lundgren E 2005 Prog. Surf. Sci. 80 1Google Scholar

    [18]

    Feenstra R M 1994 Phys. Rev. B 50 4561Google Scholar

    [19]

    Albrektsen O, Arent D J, Meier H P, Salemink H W M, 1990 Appl. Phys. Lett. 57 31Google Scholar

    [20]

    Newman N, Spicer W E, Kendelewicz T, Lindau I 1986 J. Vac. Sci. Technol. B 4 931Google Scholar

    [21]

    邓宗武, 郭伟民, 刘焕明, 曹立礼 1999 物理化学学报 15 303Google Scholar

    Deng Z W, Kwok Raymund W M, Lau Leo W M, Cao L L 1999 Acta Phys-Chim. Sin. 15 303Google Scholar

    [22]

    Kingston R H, Neustadter S F 1955 J. Appl. Phys 26 718Google Scholar

    [23]

    Seiwatz R, Green M 1958 J. Appl. Phys 29 1034Google Scholar

    [24]

    Jäger N D, Weber E R, Urban K, Ebert P H 2003 Phys. Rev. B 67 165327Google Scholar

    [25]

    Ivanova L, Borisova S, Eisele H, Dähne M, Laubsch A, Ebert P H 2008 Appl. Phys. Lett. 93 192110Google Scholar

  • [1] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] You Si-Fan,  Sun Lu-Ye,  Guo Jing,  Qiu Xiao-Hui,  Jiang Ying. Recent advances in probing surface/interfacial water by scanning probe microscopy. Acta Physica Sinica, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [3] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [4] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [5] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [6] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [7] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [8] Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5. Acta Physica Sinica, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [9] Feng Wei, Zhao Ai-Di. STM study of single cobalt atoms and clusters adsorbed on Rh (111) and Pd (111). Acta Physica Sinica, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [10] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [11] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [12] Wang Qi, Zhao Hua-Bo, Zhang Zhao-Hui. Conductance enhancement phenomenon of graphene ribbons on highly oriented pyrolytic graphite surfaces studied by scanning probe microscopy. Acta Physica Sinica, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [13] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [14] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [15] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [16] YAN YONG-MEI, SUN YI-YANG, DING XIAO-YONG, CHEN YI-MING. STUDY ON THE ADSORPTION MECHANISM OF GASEOUS MOLECULES ON SURFACE OF SEMICONDUCT OR BY PHOTOVOLTAIC METHOD. Acta Physica Sinica, 2000, 49(12): 2448-2454. doi: 10.7498/aps.49.2448
    [17] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
    [18] YU HONG-BIN, GAO BO, GAI ZHENG, YANG WEI-SHENG. OBSERVATION OF BIAS VOLTAGE INDUCED ATOMIC DIFFUSION ON A GOLD STM TIP. Acta Physica Sinica, 1997, 46(4): 679-687. doi: 10.7498/aps.46.679
    [19] YU HONG-BIN, GAO BO, GAI ZHENG, YANG WEI-SHENG. MANIPULATION OF GOLD SINGLE CRYSTAL ISLANDS- ON HOPG SURFACE WITH A STM TIP. Acta Physica Sinica, 1997, 46(3): 505-510. doi: 10.7498/aps.46.505
    [20] Fang Ye, Wei Ying, Zhong Fa-Peng, Bai Li-Chun, Tang You-Qi. . Acta Physica Sinica, 1995, 44(4): 599-605. doi: 10.7498/aps.44.599
Metrics
  • Abstract views:  6984
  • PDF Downloads:  186
  • Cited By: 0
Publishing process
  • Received Date:  05 March 2021
  • Accepted Date:  06 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回