Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-molecule study of interaction between melittin and one-component lipid membrane

Wang Kang Xu Cheng Wu Jin-Feng Yang Kai Yuan Bing

Citation:

Single-molecule study of interaction between melittin and one-component lipid membrane

Wang Kang, Xu Cheng, Wu Jin-Feng, Yang Kai, Yuan Bing
PDF
HTML
Get Citation
  • In recent years, the emergence and development of single-molecule tracking technology has provided a new way to study the biological process in a cell membrane. However, the heterogeneity of biomolecular motions in cell membranes makes it difficult to distinguish and separate different molecular motion patterns from a large number of molecular trajectories. In this work, taking the system of interaction between melittin and a single-component supported phospholipid bilayer (SLB) membrane as an example, a type of data analysis method is developed through using the frequency distribution of standard deviations of single molecular motion displacements to distinguish and separate lipid molecules in different motion modes. It provides higher accuracy and more quantitative information than traditional analysis methods based on the frequency distribution of displacement or radius of gyration. By using this method, we successfully separate the two moving states of lipids in the SLB, and find that such a distribution is partly consistent with the location distribution of lipids in the upper leaflet and lower leaflet. Under the influence of surface adsorption or transmembrane poration of melittin at different concentrations, the movements of these two types of lipids are disturbed in different ways. In this work, a data analysis method for the separation of molecular motion patterns is developed according to the complex heterogeneity of molecular motions in a phospholipid membrane system. The different effects on the upper leaflet and lower leaflet of a lipid membrane due to melittin actions at different stages are obtained. The method developed in this work will be of great help in studying the dynamic processes of biological systems by using single-molecule tracking technology.
      Corresponding author: Yang Kai, yangkai@suda.edu.cn ; Yuan Bing, yuanbing@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21774092, U1532108, U1932121)
    [1]

    Wimley W C 2010 ACS Chem. Biol. 5 905Google Scholar

    [2]

    Deng Z X, Li J L, Yuan B, Yang K 2019 Commun. Theor. Phys. 71 887Google Scholar

    [3]

    Yang L, Harroun T A, Weiss T M, Ding L, Huang H W 2001 Biophys. J. 81 1475Google Scholar

    [4]

    Wiedman G, Fuselier T, He J, Searson P C, Hristova K, Wimley W C 2014 J. Am. Chem. Soc. 136 4724Google Scholar

    [5]

    Liu J J, Xiao S F, Li J L, Yuan B, Yang K, Ma Y Q 2018 Biochim. Biophys. Acta, Biomembr. 1860 2234Google Scholar

    [6]

    Lee M T, Sun T L, Hung W C, Huang H W 2013 Proc. Natl. Acad. Sci. U. S. A. 110 14243Google Scholar

    [7]

    Norregaard K, Metzler R, Ritter C M, Berg-Sorensen K, Oddershede L B 2017 Chem. Rev. 117 4342Google Scholar

    [8]

    Shen H, Tauzin L J, Baiyasi R, Wang W X, Moringo N, Shuang B, Landes C F 2017 Chem. Rev. 117 7331Google Scholar

    [9]

    von Diezmann A, Shechtman Y, Moerner W E 2017 Chem. Rev. 117 7244Google Scholar

    [10]

    Xu C, Ma W D, Wang K, He K J, Chen Z L, Liu J J, Yang K, Yuan B 2020 J. Phys. Chem. Lett. 11 4834Google Scholar

    [11]

    He W, Song H, Su Y, Geng L, Ackerson B J, Peng H B, Tong P 2016 Nat. Commun. 7 11701Google Scholar

    [12]

    Golan Y, Sherman E 2017 Nat. Commun. 8 15851Google Scholar

    [13]

    Metzler R, Jeon J H, Cherstvy A G 2016 Biochim. Biophys. Acta, Biomembr. 1858 2451Google Scholar

    [14]

    Zwang T J, Fletcher W R, Lane T J, Johal M S 2010 Langmuir 26 4598Google Scholar

    [15]

    Krapf D, Campagnola G, Nepal K, Peersen O B 2016 Phys. Chem. Chem. Phys. 18 12633Google Scholar

    [16]

    Chen K J, Wang B, Guan J, Granick S 2013 ACS Nano 7 8634Google Scholar

    [17]

    Schoch R L, Barel I, Brown F L H, Haran G 2018 J. Chem. Phys. 148 123333Google Scholar

    [18]

    Xue C D, Shi X H, Tian Y, Zheng X, Hu G Q 2020 Nano Lett. 20 3895Google Scholar

    [19]

    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A 2002 J. Cell Biol. 157 1071Google Scholar

    [20]

    Jeon J H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sorensen K, Oddershede L, Metzler R 2011 Phys. Rev. Lett. 106 048103Google Scholar

    [21]

    Lubelski A, Sokolov I M, Klafter J 2008 Phys. Rev. Lett. 100 250602Google Scholar

    [22]

    Jeon J H, Monne H M S, Javanainen M, Metzler R 2012 Phys. Rev. Lett. 109 188103Google Scholar

    [23]

    Burov S, Jeon J H, Metzler R, Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800Google Scholar

  • 图 1  利用传统的位移和回旋半径PDF进行轨迹分析 (a) 轨迹的位移频数分布情况, 包括两类原始轨迹$ T(\sigma = 1) $, $ T(\sigma = 1. 25) $和二者混合之后的轨迹$ {T}_{\rm{mixed}} $; (b) 三类轨迹的回旋半径频数分布情况

    Figure 1.  Conventional PDF analysis of the displacement and $ {R}_{\rm{g}} $ of trajectories: (a) Displacement PDF of the trajectories before mixing ($ T(\sigma = 1) $, $ T(\sigma = 1. 25) $) and after mixing ($ {T}_{\rm{mixed}} $); (b) $ {R}_{\rm{g}} $ PDF of the three conditions.

    图 2  利用Dstd频数分布进行轨迹分析举例 (a)$ {T}_{\rm{mixed}}(\sigma = 1, 1. 25) $; (b)$ {T}_{\rm{mixed}}\left(\sigma = 1, 1. 5\right); $ (c)$ {T}_{\rm{mixed}}\left(\sigma = 1, 2\right); $ (d) 三种$ {T}_{\rm{mixed}} $经过Dstd轨迹分离法处理之后所得轨迹数量的准确率

    Figure 2.  Typical examples showing trajectory analysis based on the PDF of Dstd: (a)$ {T}_{\rm{mixed}}\left(\sigma = 1, 1. 25\right); $ (b)$ {T}_{\rm{mixed}}\left(\sigma = 1, 1. 5\right); $ (c)$ {T}_{\rm{mixed}}\left(\sigma = 1, 2\right); $ (d) accuracy of the seperation shown in Fig. (a) (c).

    图 3  DOPC支撑脂双层膜内磷脂分子运动轨迹的Dstd的频数分布分析 (a), (b) 典型的单个磷脂分子时间序列荧光成像照片(拍摄速率30 frames/s)及运动轨迹(总时长4.38 s). (c)—(e) 原始以及加入荧光淬灭剂之后的脂膜: (c)示意图; (d)分子轨迹Dstd频数分布情况; (e) $ {T}_{\rm{slow}} $$ {T}_{\rm{fast}} $比例柱状图. 图(c)中红色为荧光脂分子, 蓝色为无荧光脂分子

    Figure 3.  PDF of Dstd of the lipid trajectories in a DOPC SLB before or after fluorescence quenching: (a), (b) Representative lipid molecule in a pristine membrane, its time-serial images (at 30 frames/s) and trajectory (with a time duration of 4.38 s); (c)−(e) schematic diagram, PDF of Dstd, and percentage histogram of the $ {T}_{\rm{slow}} $ and $ {T}_{\rm{fast}} $, of the membrane before and after outer-leaflet fluorescence quenching.

    图 A2  原始脂膜内脂分子运动行为的回旋半径PDF分析 (a) 不同步长下的 ${R_{\rm{g}}}$频数分布以及相应的阈值; (b) 分别以${R_{\rm{g}}}$${D_{\rm{std}}}$为标准分离轨迹得到的${T_{\rm{slow}}}$占比柱状图; (c) 纯DOPC脂膜中磷脂分子运动轨迹的回旋半径以及位移标准差之间的关系, 其中黑色线为拟合曲线, 二者呈现正相关

    Figure A2.  PDF analysis of ${R_{\rm{g}}}$ for the lipids in a pristine membrane: (a) PDF of ${R_{\rm{g}}}$ acquried with different step values (Step = 0.1, 0.2 or 0.3). Dashed lines show determination of the threshold value separating the trajectories. (b) Percentage of ${T_{\rm{slow}}}$ obtained by ${R_{\rm{g}}}$ or ${D_{\rm{std}}}$ analysis. (c) Relationship between ${R_{\rm{g}}}$ and ${D_{\rm{std}}}$ for a pure DOPC bilayer.

    图 A3  不同步长的Dstd的频数分布以及相应的高斯拟合 (a) 步长为0.05; (b) 步长为0.02; (c) 步长为0.04

    Figure A3.  PDF of Dstd by different step and corresponding Gaussian fittings: (a) step = 0.05; (b) step = 0.02; (c) step = 0.04.

    图 A4  不同浓度的蜂毒肽作用下的GUV泄露实验 (a)—(c) 分别在0.5, 5.0以及8 μg/mL的蜂毒肽的作用下的GUV泄露情况, 其中绿色通道为GUV中包裹的钙黄绿素, 红色通道代表GUV所在的轮廓; (d) 0—10 μg/mL各浓度的蜂毒肽对GUV的扰动情况; (e)浓度3 μg/mL蜂毒肽的作用下, 典型的GUV荧光泄露曲线; (f) 低浓度蜂毒肽吸附在脂膜以及高浓度蜂毒肽形成跨膜孔道的示意图

    Figure A4.  GUV leakage experiment incubated with different concentration of melittin: (a)–(c) Confocal images of GUV leakage incubated with 0.5, 5.0 and 8 μg/mL of melittin; (d) influence on GUV by different concentration of melittin; (e) typical leakage curve of GUV incubated with 3 μg/mL; (f) sketch of absorption or poration of melittin interacted with membrane.

    图 4  蜂毒肽作用下的脂分子运动行为分析 (a), (b) 蜂毒肽影响下磷脂分子运动轨迹的Dstd频数分布, 多肽浓度为 (a) 0.5 µg/mL, (b) 5.0 µg/mL; (c), (d) 三种实验体系内$ {T}_{\rm{fast}} $$ {T}_{\rm{slow}} $的系综平均均方位移; (e) 三个体系中多肽与脂膜作用示意图

    Figure 4.  Dstd PDF analysis of the melittin-exposed lipid membrane: (a), (b) PDF of Dstd of lipids incubated with melittin at (a) 0.5 µg/mL and (b) 5.0 µg/mL; (c), (d) EA-MSD of $ {T}_{\rm{fast}} $ and $ {T}_{\rm{slow}} $ in the three systems; (e) cartoons showing melittin-membrane interactions in the three systems.

    图 A5  分子动力学模拟中蜂毒肽影响下脂分子的扩散情况 (a) 代表性俯视截图, 显示蜂毒肽在脂膜表面的吸附; (b)脂分子的扩散图谱[10]

    Figure A5.  Diffusion of lipids upon melittin exposure in molecular dynamics simulations: (a) Representative snapshot of melittin binding on a membrane (top view); (b) diffusion map of individual lipids[10].

    图 A1  数值模拟所得的σ = 1的四条代表轨迹

    Figure A1.  Four typical trajectories with σ = 1 obtained from numeric simulations.

    表 1  不同浓度蜂毒肽影响下磷脂膜中磷脂分子运动Dstd频数分布的拟合结果

    Table 1.  Fittings of the Dstd PDF of lipid trajectories in membrane incubated with melittin at different concentrations.

    $ {T}_{\rm{slow}} $ $ {T}_{\rm{fast}} $阈值
    峰位半高宽占比峰位半高宽占比/%
    原始膜0.050.0621.25%0.370.1178.750.16
    0.5 μg/mL0.030.0312.09%0.360.1187.910.09
    5.0 μg/mL0.030.0312.71%0.290.0887.290.10
    DownLoad: CSV

    表 A1  正文中图2所示高斯拟合的拟和优度

    Table A1.  Goodness of the Gaussian fittings in Fig. 2 in the main text.

    R2 F-value
    σ = 1/σ = 1.25 0.99 24362.45
    σ = 1/σ = 1.5 0.99 4661.03
    σ = 1/σ = 2 0.99 5739.05
    DownLoad: CSV

    表 A2  单组分DOPC磷脂膜淬灭前后磷脂分子运动Dstd频数分布的拟合数值

    Table A2.  Fittings of the Dstd PDF of lipid trajectories in a SLB membrane before and after quenching.

    Tslow Tfast 阈值 R2 F-value
    峰位 半高宽 占比/% 峰位 半高宽 占比
    原始膜 0.05 0.06 21.25 0.37 0.11 78.75 0.16 0.98 333.21
    淬灭后 0.05 0.05 49.68 0.36 0.10 50.32 0.16 0.93 88.91
    DownLoad: CSV

    表 A4  不同浓度的蜂毒肽影响下磷脂分子运动轨迹的系综平均均方位移的扩散方程拟合结果

    Table A4.  Fittings of the EA-MSD of lipid trajectories in membrane incubated with melittin at different concentrations.

    Tslow Tfast
    D α D α
    原始膜 0.56 0.16 3.60 0.90
    0.5 μg/mL 0.01 0.70 3.30 0.90
    5.0 μg/mL 0.24 0.12 2.08 0.87
    DownLoad: CSV

    表 A3  不同浓度蜂毒肽影响下磷脂膜中磷脂分子运动Dstd频数分布的拟合数值

    Table A3.  Fittings of the Dstd PDF of lipid trajectories in membrane incubated with melittin at different concentrations.

    Tslow Tfast 阈值 R2 F-value
    峰位 半高宽 占比/% 峰位 半高宽 占比/%
    原始膜 0.05 0.06 21.25 0.37 0.11 78.75 0.16 0.98 333.21
    0.5 μg/mL 0.03 0.03 12.09 0.36 0.11 87.91 0.09 0.99 496.45
    5.0 μg/mL 0.03 0.03 12.71 0.29 0.08 87.29 0.10 0.97 216.97
    DownLoad: CSV
  • [1]

    Wimley W C 2010 ACS Chem. Biol. 5 905Google Scholar

    [2]

    Deng Z X, Li J L, Yuan B, Yang K 2019 Commun. Theor. Phys. 71 887Google Scholar

    [3]

    Yang L, Harroun T A, Weiss T M, Ding L, Huang H W 2001 Biophys. J. 81 1475Google Scholar

    [4]

    Wiedman G, Fuselier T, He J, Searson P C, Hristova K, Wimley W C 2014 J. Am. Chem. Soc. 136 4724Google Scholar

    [5]

    Liu J J, Xiao S F, Li J L, Yuan B, Yang K, Ma Y Q 2018 Biochim. Biophys. Acta, Biomembr. 1860 2234Google Scholar

    [6]

    Lee M T, Sun T L, Hung W C, Huang H W 2013 Proc. Natl. Acad. Sci. U. S. A. 110 14243Google Scholar

    [7]

    Norregaard K, Metzler R, Ritter C M, Berg-Sorensen K, Oddershede L B 2017 Chem. Rev. 117 4342Google Scholar

    [8]

    Shen H, Tauzin L J, Baiyasi R, Wang W X, Moringo N, Shuang B, Landes C F 2017 Chem. Rev. 117 7331Google Scholar

    [9]

    von Diezmann A, Shechtman Y, Moerner W E 2017 Chem. Rev. 117 7244Google Scholar

    [10]

    Xu C, Ma W D, Wang K, He K J, Chen Z L, Liu J J, Yang K, Yuan B 2020 J. Phys. Chem. Lett. 11 4834Google Scholar

    [11]

    He W, Song H, Su Y, Geng L, Ackerson B J, Peng H B, Tong P 2016 Nat. Commun. 7 11701Google Scholar

    [12]

    Golan Y, Sherman E 2017 Nat. Commun. 8 15851Google Scholar

    [13]

    Metzler R, Jeon J H, Cherstvy A G 2016 Biochim. Biophys. Acta, Biomembr. 1858 2451Google Scholar

    [14]

    Zwang T J, Fletcher W R, Lane T J, Johal M S 2010 Langmuir 26 4598Google Scholar

    [15]

    Krapf D, Campagnola G, Nepal K, Peersen O B 2016 Phys. Chem. Chem. Phys. 18 12633Google Scholar

    [16]

    Chen K J, Wang B, Guan J, Granick S 2013 ACS Nano 7 8634Google Scholar

    [17]

    Schoch R L, Barel I, Brown F L H, Haran G 2018 J. Chem. Phys. 148 123333Google Scholar

    [18]

    Xue C D, Shi X H, Tian Y, Zheng X, Hu G Q 2020 Nano Lett. 20 3895Google Scholar

    [19]

    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A 2002 J. Cell Biol. 157 1071Google Scholar

    [20]

    Jeon J H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sorensen K, Oddershede L, Metzler R 2011 Phys. Rev. Lett. 106 048103Google Scholar

    [21]

    Lubelski A, Sokolov I M, Klafter J 2008 Phys. Rev. Lett. 100 250602Google Scholar

    [22]

    Jeon J H, Monne H M S, Javanainen M, Metzler R 2012 Phys. Rev. Lett. 109 188103Google Scholar

    [23]

    Burov S, Jeon J H, Metzler R, Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800Google Scholar

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue. Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer. Acta Physica Sinica, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [4] Xu Cheng, Lin Zhao, Yang Kai, Yuan Bing. Single molecular kinetics during the interactions between melittin and a bi-component lipid membrane. Acta Physica Sinica, 2020, 69(10): 108701. doi: 10.7498/aps.69.20200166
    [5] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao. Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Acta Physica Sinica, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [7] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [8] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [9] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [10] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [11] Ma Ying. Variable charge molecular dynamics simulation of vitreous silica. Acta Physica Sinica, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [12] Zhou Zong-Rong, Wang Yu, Xia Yuan-Ming. Molecular dynamics study of deformation mechanism of γ-TiAl intermetallics. Acta Physica Sinica, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [13] Liu Hao, Ke Fu-Jiu, Pan Hui, Zhou Min. Molecular dynamics simulation of the diffusion bonding and tensile behavior of a Cu-Al interface. Acta Physica Sinica, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [14] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [15] Luo Jin, Zhu Wen-Jun, Lin Li-Bin, He Hong-Liang, Jing Fu-Qian. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting. Acta Physica Sinica, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
    [16] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [17] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  4287
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2021
  • Accepted Date:  14 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回