Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing

Ma Yu-Fei

Citation:

Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing

Ma Yu-Fei
PDF
HTML
Get Citation
  • Laser spectroscopy based techniques have the advantages of high sensitivities, high selectivities, non-invasiveness and in situ, real-time observations. They are widely used in numerous fields, such as environmental monitoring, life science, medical diagnostics, manned space flight, and planetary exploration. Owing to the merits of low cost, compact volume and strong environment adaptability, quartz-enhanced photoacoustic spectroscopy (QEPAS) based sensing is an important laser spectroscopy-based method of detecting the trace gas, which was invented in 2002. Detection sensitivity is a key parameter for gas sensors because it determines their real applications. In this paper, focusing on the detection sensitivity, the common methods for QEPAS are summarized. High power laser including amplified diode laser by erbium doped fiber amplifier (EDFA), and quantum cascade laser are used to improve the excitation intensity of acoustic wave. The absorption line of gas molecules located at the fundamental bands of mid-infrared region is adopted to increase the laser absorption strength. Micro-resonator is employed to enhance the generated acoustic pressure by forming a standing wave cavity. Quartz tuning forks (QTFs) with low resonant frequency are used to increase the accumulation time of acoustic energy in itself. Multi-pass strategy is utilized to amplify the action length between laser beam and target gas in the prongs of QTF. The advantages and disadvantages of the above methods are discussed respectively. For the issues in real applications, the all-fiber strucure in near-infared region and mid-infrared region and miniaturization using three-dimensional(3D) printing technique for QEPAS sensor are summarized. A QEPAS technique based multi-gas sensor is used to quantify the concentration of carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanide (HCN), and hydrogen chloride (HCl) for post-fire cleanup aboard spacecraft, which is taken for example for the real application.Finally, the methods of further improving the sensitivity of QEPAS sensor are proposed.
      Corresponding author: Ma Yu-Fei, mayufei@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62022032, 61875047, 61505041), the Outstanding Youth Scientsit Fund of the Natural Science Foundation of Heilongjiang Province of China (Grant No. YQ2019F006), the Scientific Rearch Starting Funds for the Postdoctoral of Heilongjiang Province, China (Grant No. LBH-Q18052), the Fundamental Research Funds for the Central Universities
    [1]

    Khalil M A K, Rasmussen R A 1984 Science 224 54Google Scholar

    [2]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210Google Scholar

    [3]

    Wojtas J, Tittel F K, Stacewicz T, Bielecki Z, Lewicki R, Mikolajczyk J, Nowakowski M, Szabra D, Stefanski P, Tarka J 2014 Int. J. Thermophys. 35 2215Google Scholar

    [4]

    Milde T, Hoppe M, Tatenguem H, Mordmüller M, Ogorman J, Willer U, Schade W, Sacher J 2018 Appl. Opt. 57 C120Google Scholar

    [5]

    Ma Y F, Qiao S D, He Y, Li Y, Zhang Z H, Yu X, Tittel F K 2019 Opt. Express 27 14163Google Scholar

    [6]

    Spagnolo V, Dong L, Kosterev A A, Tittel F K 2012 Opt. Express 20 3401Google Scholar

    [7]

    Krzempek K, Dudzik G, Abramski K 2018 Opt. Express 26 28861Google Scholar

    [8]

    Qiao S D, Qu Y C, Ma Y F, He Y, Wang Y, Hu Y Q, Yu X, Zhang Z H, Tittel F K 2019 Sensors 19 4187Google Scholar

    [9]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. SPIE 8032 80320D

    [10]

    Ma Y F, He Y, Tong Y, Yu X, Tittel F K 2018 Opt. Express 26 32103Google Scholar

    [11]

    Bell A G 1880 Am. J. Sci. 20 305

    [12]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902Google Scholar

    [13]

    Liu K, Li J, Wang L, Tan T, Zhang W, Gao X. M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527Google Scholar

    [14]

    Ma Y F 2020 Front. Phys. 8 268Google Scholar

    [15]

    Giglio M, Patimisco P, Sampaolo A, Zifarelli A, Blanchard R, Pfluegl C, Witinski M F, Vakhshoori D, Tittel F K, Spagnolo V 2018 Appl. Phys. Lett. 113 171101Google Scholar

    [16]

    Dong L, Yu Y J, Li C G, So S, Tittel F K 2015 Opt. Express 23 19821Google Scholar

    [17]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596Google Scholar

    [18]

    Rousseau R, Loghmari Z, Bahriz M, Chamassi K, Teissier R, Baranov A N, Vicet A 2019 Opt. Express 27 7435Google Scholar

    [19]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R, Tittel F K 2015 Appl. Phys. Lett. 107 021106Google Scholar

    [20]

    Lassen M, Lamard L, Feng Y, Peremans A, Petersen J C 2016 Opt. Lett. 41 4118Google Scholar

    [21]

    Ma Y F 2018 Appl. Sci. 8 1822Google Scholar

    [22]

    Petra, N, Zweck J, Kosterev A A, Minkoff S E, Thomazy D 2009 Appl. Phys. B 94 673Google Scholar

    [23]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar

    [24]

    Giessibl F J 1998 Appl. Phys. Lett. 73 3956Google Scholar

    [25]

    Barbic M, Eliason L, Ranshaw J 2007 Sens. Actuators, A 136 564Google Scholar

    [26]

    Babic B, Hsu M T L, Gray M B, Lu M Z, Herrmann J 2015 Sens. Actuators, A 223 167Google Scholar

    [27]

    Paetzold U W, Lehnen S, Bittkau K, Rau U, Carius R 2014 Nano Lett. 14 6599Google Scholar

    [28]

    Zhang M, Chen D H, He X, Wang X M 2020 Sensors 20 198

    [29]

    Nguyen B T, Triki M, Desbrosses G, Vicet A 2015 Rev. Sci. Instrum. 86 023111Google Scholar

    [30]

    Ma Y F, Tong Y, He Y, Long J H, Yu X 2018 Sensors 18 2047Google Scholar

    [31]

    Patimisco P, Borri S, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2014 Analyst 139 2079Google Scholar

    [32]

    Patimisco P, Sampaolo A, Dong L, Tittel F K, Spagnolo V 2018 Appl. Phys. Rev. 5 011106Google Scholar

    [33]

    Patimisco P, Sampaolo A, Dong L, Giglio M, Scamarcio G, Tittel F K, Spagnolo V 2016 Sens. Actuators, B 227 539Google Scholar

    [34]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105Google Scholar

    [35]

    Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Lasers Eng. 132 106155Google Scholar

    [36]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008Google Scholar

    [37]

    Wu H P, Sampaolo A, Dong L, Patimisco P, Liu X L, Zheng H D, Yin X K, Ma W G, Zhang L, Yin W B, Spagnolo V, Jia S T, Tittel F K 2015 Appl. Phys. Lett. 107 111104Google Scholar

    [38]

    Ma Y F, He Y, Zhang L G, Yu X, Zhang J B, Sun R, Tittel F K 2017 Appl. Phys. Lett. 107 031107

    [39]

    Giglio M, Zifarelli A, Sampaolo A, Menduni G, Elefante A, Blanchard R, Pfluegl C, Witinski M F, Vakhshoori D, Wu H P, Passaro V M N, Patimisco P, Tittel F K, Dong L, Spagnolo V 2020 Photoacoustics 17 100159Google Scholar

    [40]

    Ma Y F, Tong Y, He Y, Yu X, Tittel F K 2018 Sensors 18 122

    [41]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2018 Opt. Express 26 9666Google Scholar

    [42]

    Yi H M, Maamary R, Gao X M, Sigrist M W, Fertein E, Chen W D 2015 Appl. Phys. Lett. 106 101109Google Scholar

    [43]

    Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar

    [44]

    Wang Z, Li Z L, Ren W 2016 Opt. Express 24 4143Google Scholar

    [45]

    Borri S, Patimisco P, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2013 Appl. Phys. Lett. 103 021105Google Scholar

    [46]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Optics 17 055401Google Scholar

    [47]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594Google Scholar

    [48]

    Zheng H D, Dong L, Sampaolo A, Wu H P, Patimisco P, Yin X K, Ma W G, Zhang L, Yin W B, Spagnolo V, Jia S T, Tittel F K 2016 Opt. Lett. 41 978Google Scholar

    [49]

    Yi H M, Chen W D, Sun S W, Liu K, Tan T, Gao X M 2012 Opt. Express 20 9187Google Scholar

    [50]

    Hu L, Zheng C T, Zheng J, Wang Y D, Tittel F K 2019 Opt. Lett. 44 2562Google Scholar

    [51]

    Patimisco P, Sampaolo A, Mackowiak V, Rossmadl H, Cable A, Tittel F K, Spagnolo V 2018 IEEE Trans. Ultrason. Ferroelctr. Freq. Control 65 1951Google Scholar

    [52]

    Patimisco P, Sampaolo A, Zheng H D, Dong L, Tittel F K, Spagnolo V 2016 Adv. Phys. X 2 169

    [53]

    Zheng H D, Liu Y H, Lin H Y, Liu B, Gu X H, Li D Q, Huang B C, Wu Y C, Dong L P, Zhu W G, Tang J Y, Guan H Y, Lu H H, Zhong Y C, Fang J B, Luo Y H, Zhang J, Yu J H, Chen Z, Tittel F K 2020 Photoacoustics 17 100158Google Scholar

    [54]

    Ma Y F, He Y, Tong Y, Yu X, Tittel F K 2017 Opt. Express 25 29356Google Scholar

    [55]

    Ma Y F, He Y, Yu X, Chen C, Sun R, Tittel F K 2016 Sens. Actuators, B 233 388Google Scholar

    [56]

    Zheng H D, Dong L, Patimisco P, Wu H P, Sampaolo A, Yin X K, Li S Z, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 110 021110Google Scholar

    [57]

    Qiao S D, Ma Y F, Patimisco P, Sampaolo A, He Y, Lang Z T, Tittel F K, Spagnolo V 2021 Opt. Lett. 46 977Google Scholar

    [58]

    Ma Y F, Qiao S D, Patimisco P, Sampaolo A, Wang Y, Tittel F K, Spagnolo V 2020 Appl. Phys. Lett. 116 061101Google Scholar

    [59]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, De Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114Google Scholar

    [60]

    Zheng H D, Dong L, Sampaolo A, Patimisco P, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2016 Appl. Phys. Lett. 109 111103Google Scholar

    [61]

    Sampaolo A, Patimisco P, Dong L, Geras A, Scamarcio G, Starecki T, Tittel F K, Spagnolo V 2015 Appl. Phys. Lett. 107 231102Google Scholar

    [62]

    Wu H P, Yin X K, Dong L, Pei K L, Sampaolo A, Patimisco P, Zheng H D, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 110 121104Google Scholar

    [63]

    Feng W, Qu Y, Gao Y, Ma Y 2021 Microwave Opt. Technol. Lett. 1 0

    [64]

    Menduni G, Sgobba F, Russo S D, Ranieri A C, Sampaolo A, Patimisco P, Giglio M, Passaro V M N, Csutak S, Assante D, Ranieri E, Geoffrion E, Spagnolo V 2020 Molecules 25 5607Google Scholar

    [65]

    Ma Y F, He Y, Yu X, Zhang J B, Sun R, Tittel F K 2016 Appl. Phys. Lett. 108 091115Google Scholar

    [66]

    He Y, Ma Y F, Tong Y, Yu X, Peng Z F, Gao J, Tittel F K 2017 Appl. Phys. Lett. 111 241102Google Scholar

    [67]

    Spagnolo V, Patimisco P, Borri S, Scamarcio G, Bernacki B E, Kriesel J 2012 Opt Lett. 37 4461Google Scholar

    [68]

    Li Z, Shi C, Ren W 2016 Opt. Lett. 41 4095Google Scholar

    [69]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Laser Technol. 115 129Google Scholar

    [70]

    Ma Y F, Tong Y, He Y, Jin X G, Tittel F K 2019 Opt. Express 27 9302Google Scholar

    [71]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2011 Proc. SPIE 7945 794501Google Scholar

    [72]

    Hu Y Q, Qiao S D, He Y, Lang Z T, Ma Y F 2021 Opt. Express 29 5121Google Scholar

    [73]

    Ma Y F, Hu Y Q, Qiao S D, He Y, Tittel F K 2020 Photoacoustics 20 100206Google Scholar

    [74]

    Qiao S D, He Y, Ma Y F 2021 Opt. Lett.Google Scholar

  • 图 1  QEPAS传感示意图 (a) QEPAS技术原理; (b) 声波产生及探测

    Figure 1.  Schematic diagram of QEPAS sensing: (a) Principle of QEPAS; (b) generation and detection of acoustics wave.

    图 2  石英音叉弯曲振动模式 (a) 音叉模型; (b) 面外基频模态; (c) 面内基频模态; (d) 面内第一泛频模态

    Figure 2.  Flexural mode of quartz tuning fork: (a) Mode of quartz tuning fork; (b) out-of-plane fundamental mode; (c) in-plane fundamental mode; (d) in-plane 1st overtone mode

    图 3  EDFA光放大 (a) 种子光发射谱; (b) 放大后的发射谱[38]

    Figure 3.  Laser amplification by EDFA: (a) Emission spectrum for seed diode laser; (b) emission spectrum for amplified diode laser. Reproduced from Ref. [38], with the permission of AIP Publishing.

    图 4  内腔增强型QEPAS传感系统[59]

    Figure 4.  Intracavity enhanced QEPAS sensor system. Reproduced from Ref. [59], with the permission of AIP Publishing.

    图 5  基于THz激光源的QEPAS传感系统[45]

    Figure 5.  QEPAS sensing system based on THz laser. Reproduced from Ref. [45], with the permission of AIP Publishing.

    图 6  微共振腔对石英音叉QTF的增强效果示意图

    Figure 6.  The configuration of micro-resonator and the enhanced effect of acoustic pressure.

    图 7  微共振腔结构 (a) “共轴”式; (b) “离轴”式; (c) 单管“共轴”式; (d) 嵌入“离轴”式

    Figure 7.  The configuration of micro-resonator: (a) On-beam; (b) off-beam; (c) single-tube on-beam; (d) embedded off-beam.

    图 8  (a) 不同模式下石英音叉的最佳激发位置; (b) 基频振动模态; (c) 第一泛频振动模态; (d) 基频与第一泛频的复合振动模态[62]

    Figure 8.  (a) Optimal excitation position for different modes of quartz tuning fork; (b) fundamental mode; (c) 1st overtone mode; (d) combined mode. Reproduced from Ref. [62], with the permission of AIP Publishing.

    图 9  双波腹激发下的QEPAS传感器[56]

    Figure 9.  Double antinode excited QEPAS sensor. Reproduced from Ref. [56], with the permission of AIP Publishing.

    图 10  基于多光程吸收的QEPAS传感器[57]

    Figure 10.  Multi-pass based QEPAS sensor. Reprinted with permission from Ref. [57] © The Optical Society.

    图 11  面内激光入射的QEPAS传感器[58]

    Figure 11.  In-plane QEPAS sensor. Reproduced from Ref. [58], with the permission of AIP Publishing.

    图 12  基于倏逝场激发的准分布式全光纤QEPAS传感器[66]

    Figure 12.  Quasi-distributed gas sensing based on fiber evanescent wave QEPAS sensor. Reproduced from Ref. [66], with the permission of AIP Publishing.

    图 13  基于机械加工方式所得到的光学及声波探测部分[69]

    Figure 13.  Optical and acoustic detection parts for QEPAS sensor based on mechanical processing[69].

    图 14  基于3D打印方式所得到的光学及声波探测部分[70]

    Figure 14.  Optical and acoustic detection parts for QEPAS sensor based on 3D printing. Reprinted with permission from Ref. [70] © The Optical Society.

    图 15  多通道QEPAS传感器[71]

    Figure 15.  Multi-channel QEPAS sensor[71].

  • [1]

    Khalil M A K, Rasmussen R A 1984 Science 224 54Google Scholar

    [2]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210Google Scholar

    [3]

    Wojtas J, Tittel F K, Stacewicz T, Bielecki Z, Lewicki R, Mikolajczyk J, Nowakowski M, Szabra D, Stefanski P, Tarka J 2014 Int. J. Thermophys. 35 2215Google Scholar

    [4]

    Milde T, Hoppe M, Tatenguem H, Mordmüller M, Ogorman J, Willer U, Schade W, Sacher J 2018 Appl. Opt. 57 C120Google Scholar

    [5]

    Ma Y F, Qiao S D, He Y, Li Y, Zhang Z H, Yu X, Tittel F K 2019 Opt. Express 27 14163Google Scholar

    [6]

    Spagnolo V, Dong L, Kosterev A A, Tittel F K 2012 Opt. Express 20 3401Google Scholar

    [7]

    Krzempek K, Dudzik G, Abramski K 2018 Opt. Express 26 28861Google Scholar

    [8]

    Qiao S D, Qu Y C, Ma Y F, He Y, Wang Y, Hu Y Q, Yu X, Zhang Z H, Tittel F K 2019 Sensors 19 4187Google Scholar

    [9]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. SPIE 8032 80320D

    [10]

    Ma Y F, He Y, Tong Y, Yu X, Tittel F K 2018 Opt. Express 26 32103Google Scholar

    [11]

    Bell A G 1880 Am. J. Sci. 20 305

    [12]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902Google Scholar

    [13]

    Liu K, Li J, Wang L, Tan T, Zhang W, Gao X. M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527Google Scholar

    [14]

    Ma Y F 2020 Front. Phys. 8 268Google Scholar

    [15]

    Giglio M, Patimisco P, Sampaolo A, Zifarelli A, Blanchard R, Pfluegl C, Witinski M F, Vakhshoori D, Tittel F K, Spagnolo V 2018 Appl. Phys. Lett. 113 171101Google Scholar

    [16]

    Dong L, Yu Y J, Li C G, So S, Tittel F K 2015 Opt. Express 23 19821Google Scholar

    [17]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596Google Scholar

    [18]

    Rousseau R, Loghmari Z, Bahriz M, Chamassi K, Teissier R, Baranov A N, Vicet A 2019 Opt. Express 27 7435Google Scholar

    [19]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R, Tittel F K 2015 Appl. Phys. Lett. 107 021106Google Scholar

    [20]

    Lassen M, Lamard L, Feng Y, Peremans A, Petersen J C 2016 Opt. Lett. 41 4118Google Scholar

    [21]

    Ma Y F 2018 Appl. Sci. 8 1822Google Scholar

    [22]

    Petra, N, Zweck J, Kosterev A A, Minkoff S E, Thomazy D 2009 Appl. Phys. B 94 673Google Scholar

    [23]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar

    [24]

    Giessibl F J 1998 Appl. Phys. Lett. 73 3956Google Scholar

    [25]

    Barbic M, Eliason L, Ranshaw J 2007 Sens. Actuators, A 136 564Google Scholar

    [26]

    Babic B, Hsu M T L, Gray M B, Lu M Z, Herrmann J 2015 Sens. Actuators, A 223 167Google Scholar

    [27]

    Paetzold U W, Lehnen S, Bittkau K, Rau U, Carius R 2014 Nano Lett. 14 6599Google Scholar

    [28]

    Zhang M, Chen D H, He X, Wang X M 2020 Sensors 20 198

    [29]

    Nguyen B T, Triki M, Desbrosses G, Vicet A 2015 Rev. Sci. Instrum. 86 023111Google Scholar

    [30]

    Ma Y F, Tong Y, He Y, Long J H, Yu X 2018 Sensors 18 2047Google Scholar

    [31]

    Patimisco P, Borri S, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2014 Analyst 139 2079Google Scholar

    [32]

    Patimisco P, Sampaolo A, Dong L, Tittel F K, Spagnolo V 2018 Appl. Phys. Rev. 5 011106Google Scholar

    [33]

    Patimisco P, Sampaolo A, Dong L, Giglio M, Scamarcio G, Tittel F K, Spagnolo V 2016 Sens. Actuators, B 227 539Google Scholar

    [34]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105Google Scholar

    [35]

    Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Lasers Eng. 132 106155Google Scholar

    [36]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008Google Scholar

    [37]

    Wu H P, Sampaolo A, Dong L, Patimisco P, Liu X L, Zheng H D, Yin X K, Ma W G, Zhang L, Yin W B, Spagnolo V, Jia S T, Tittel F K 2015 Appl. Phys. Lett. 107 111104Google Scholar

    [38]

    Ma Y F, He Y, Zhang L G, Yu X, Zhang J B, Sun R, Tittel F K 2017 Appl. Phys. Lett. 107 031107

    [39]

    Giglio M, Zifarelli A, Sampaolo A, Menduni G, Elefante A, Blanchard R, Pfluegl C, Witinski M F, Vakhshoori D, Wu H P, Passaro V M N, Patimisco P, Tittel F K, Dong L, Spagnolo V 2020 Photoacoustics 17 100159Google Scholar

    [40]

    Ma Y F, Tong Y, He Y, Yu X, Tittel F K 2018 Sensors 18 122

    [41]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2018 Opt. Express 26 9666Google Scholar

    [42]

    Yi H M, Maamary R, Gao X M, Sigrist M W, Fertein E, Chen W D 2015 Appl. Phys. Lett. 106 101109Google Scholar

    [43]

    Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar

    [44]

    Wang Z, Li Z L, Ren W 2016 Opt. Express 24 4143Google Scholar

    [45]

    Borri S, Patimisco P, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2013 Appl. Phys. Lett. 103 021105Google Scholar

    [46]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Optics 17 055401Google Scholar

    [47]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594Google Scholar

    [48]

    Zheng H D, Dong L, Sampaolo A, Wu H P, Patimisco P, Yin X K, Ma W G, Zhang L, Yin W B, Spagnolo V, Jia S T, Tittel F K 2016 Opt. Lett. 41 978Google Scholar

    [49]

    Yi H M, Chen W D, Sun S W, Liu K, Tan T, Gao X M 2012 Opt. Express 20 9187Google Scholar

    [50]

    Hu L, Zheng C T, Zheng J, Wang Y D, Tittel F K 2019 Opt. Lett. 44 2562Google Scholar

    [51]

    Patimisco P, Sampaolo A, Mackowiak V, Rossmadl H, Cable A, Tittel F K, Spagnolo V 2018 IEEE Trans. Ultrason. Ferroelctr. Freq. Control 65 1951Google Scholar

    [52]

    Patimisco P, Sampaolo A, Zheng H D, Dong L, Tittel F K, Spagnolo V 2016 Adv. Phys. X 2 169

    [53]

    Zheng H D, Liu Y H, Lin H Y, Liu B, Gu X H, Li D Q, Huang B C, Wu Y C, Dong L P, Zhu W G, Tang J Y, Guan H Y, Lu H H, Zhong Y C, Fang J B, Luo Y H, Zhang J, Yu J H, Chen Z, Tittel F K 2020 Photoacoustics 17 100158Google Scholar

    [54]

    Ma Y F, He Y, Tong Y, Yu X, Tittel F K 2017 Opt. Express 25 29356Google Scholar

    [55]

    Ma Y F, He Y, Yu X, Chen C, Sun R, Tittel F K 2016 Sens. Actuators, B 233 388Google Scholar

    [56]

    Zheng H D, Dong L, Patimisco P, Wu H P, Sampaolo A, Yin X K, Li S Z, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 110 021110Google Scholar

    [57]

    Qiao S D, Ma Y F, Patimisco P, Sampaolo A, He Y, Lang Z T, Tittel F K, Spagnolo V 2021 Opt. Lett. 46 977Google Scholar

    [58]

    Ma Y F, Qiao S D, Patimisco P, Sampaolo A, Wang Y, Tittel F K, Spagnolo V 2020 Appl. Phys. Lett. 116 061101Google Scholar

    [59]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, De Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114Google Scholar

    [60]

    Zheng H D, Dong L, Sampaolo A, Patimisco P, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2016 Appl. Phys. Lett. 109 111103Google Scholar

    [61]

    Sampaolo A, Patimisco P, Dong L, Geras A, Scamarcio G, Starecki T, Tittel F K, Spagnolo V 2015 Appl. Phys. Lett. 107 231102Google Scholar

    [62]

    Wu H P, Yin X K, Dong L, Pei K L, Sampaolo A, Patimisco P, Zheng H D, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 110 121104Google Scholar

    [63]

    Feng W, Qu Y, Gao Y, Ma Y 2021 Microwave Opt. Technol. Lett. 1 0

    [64]

    Menduni G, Sgobba F, Russo S D, Ranieri A C, Sampaolo A, Patimisco P, Giglio M, Passaro V M N, Csutak S, Assante D, Ranieri E, Geoffrion E, Spagnolo V 2020 Molecules 25 5607Google Scholar

    [65]

    Ma Y F, He Y, Yu X, Zhang J B, Sun R, Tittel F K 2016 Appl. Phys. Lett. 108 091115Google Scholar

    [66]

    He Y, Ma Y F, Tong Y, Yu X, Peng Z F, Gao J, Tittel F K 2017 Appl. Phys. Lett. 111 241102Google Scholar

    [67]

    Spagnolo V, Patimisco P, Borri S, Scamarcio G, Bernacki B E, Kriesel J 2012 Opt Lett. 37 4461Google Scholar

    [68]

    Li Z, Shi C, Ren W 2016 Opt. Lett. 41 4095Google Scholar

    [69]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Laser Technol. 115 129Google Scholar

    [70]

    Ma Y F, Tong Y, He Y, Jin X G, Tittel F K 2019 Opt. Express 27 9302Google Scholar

    [71]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2011 Proc. SPIE 7945 794501Google Scholar

    [72]

    Hu Y Q, Qiao S D, He Y, Lang Z T, Ma Y F 2021 Opt. Express 29 5121Google Scholar

    [73]

    Ma Y F, Hu Y Q, Qiao S D, He Y, Tittel F K 2020 Photoacoustics 20 100206Google Scholar

    [74]

    Qiao S D, He Y, Ma Y F 2021 Opt. Lett.Google Scholar

  • [1] Kou Ke, Wang Cuo, Wang Xian, Lian Tian-Hong, Jiao Ming-Xing, Fan Yu-Zhen. Sensitivity enhancement in laser self-mixing nano-particle sizer with linear current tuning based frequency shifting method. Acta Physica Sinica, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun. Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure. Acta Physica Sinica, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [3] Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun. High sensitivity quantum Michelson interferometer. Acta Physica Sinica, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [4] He Ying, Ma Yu-Fei, Tong Yao, Peng Zhen-Fang, Yu Xin. Fiber evanescent wave quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [5] Hu Ze-Hua, Ye Tao, Liu Xiong-Guo, Wang Jia. Uncertainty quantification in the calculation of keff using sensitity and stochastic sampling method. Acta Physica Sinica, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [6] Zhao Yan-Dong, Fang Yong-Hua, Li Yang-Yu, Wu Jun, Li Da-Cheng, Cui Fang-Xiao, Liu Jia-Xiang, Wang An-Jing. Theoretical research on quartz enhanced photoacoustic spectroscopy base on the resonance in an elliptical cavity. Acta Physica Sinica, 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [7] Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui. Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [8] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [9] Yin Xu-Kun, Zheng Hua-Dan, Dong Lei, Wu Hong-Peng, Liu Xiao-Li, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. Design and optimization of off-beam NO2 QEPAS sensor by use of E-MOCAM with a high power blue laser diode. Acta Physica Sinica, 2015, 64(13): 130701. doi: 10.7498/aps.64.130701
    [10] Wang Jun-Ping, Qi Su-Yang, Liu Shi-Gang. Net sensitivity for open and short model based on layout optimization. Acta Physica Sinica, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [11] Jiang Ying, Liang Da-Kai, Zeng Jie, Ni Xiao-Yu. Influence of monitoring point wavelength on axial strain sensitivity of high-birefringence fiber loop mirror. Acta Physica Sinica, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [12] Tian Hui-Juan, Niu Ping-Juan. Sensitivity of delta-P1 approximation model to the reduced scattering parameter. Acta Physica Sinica, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [13] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Zhou Hai-Jin, Wu Feng-Cheng, Wang Yang, Liu Jian-Guo, Liu Wen-Qing. The sensitivity study of NO2 vertical profile retrieval by airborne platform. Acta Physica Sinica, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [14] Wu Hong-Peng, Dong Lei, Zheng Hua-Dan, Liu Yan-Yan, Ma Wei-Guang, Zhang Lei, Wang Wu-Yi, Zhu Qing-Ke, Yin Wang-Bao, Jia Suo-Tang. Purity analysis of helium using quartz-enhanced photoacoustic spectroscopy with two non-resonant micro-tubes. Acta Physica Sinica, 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [15] Liu Yan-Yan, Dong Lei, Wu Hong-Peng, Zheng Hua-Dan, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. All optical quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [16] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] Qian Jian-Qiang, Wang Xi, Yao Jun-En, Hua Bao-Cheng. Mechanical model of tuning forks used in scanning probe microscopes. Acta Physica Sinica, 2011, 60(4): 040702. doi: 10.7498/aps.60.040702
    [18] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [20] Liu Ying, Wang Li-Jun, Guo Yun-Feng, Zhang Xiao-Juan, Gao Zong-Hui, Tian Hui-Juan. Sensitivity of spatially-resolved diffuse reflectance to high-order optical parameters. Acta Physica Sinica, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
Metrics
  • Abstract views:  7893
  • PDF Downloads:  399
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2021
  • Accepted Date:  05 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回