Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-assembled CuS porous grade sub-nanoflowers as efficient nano-adsorbents for adsorption/self-deposition characteristics research

Zhao Xian-Tuo Xu Lin-Lin Tian Yue Jiao An-Xin Ma Hui Zhang Meng-Ya Cui Qing-Qiang

Citation:

Self-assembled CuS porous grade sub-nanoflowers as efficient nano-adsorbents for adsorption/self-deposition characteristics research

Zhao Xian-Tuo, Xu Lin-Lin, Tian Yue, Jiao An-Xin, Ma Hui, Zhang Meng-Ya, Cui Qing-Qiang
PDF
HTML
Get Citation
  • In recent decades, growing population and industrial development have led to releasing huge amounts of highly toxic chemical pollutants into the environment globally. Several approaches to handling the removal of contaminants from wastewater for environmental remediation, including biological, chemical, physical, and advanced oxidation processes have been employed. Among them, using nano-adsorbents as a tool for effectively removing organic contaminants represents a promising strategy in sewage purification field. More importantly, the nano-adsorbents with auto-deposition property can greatly improve the efficiency of sewage treatment. Therefore, the developing of environment friendly nano-adsorbents is thus an important issue to remove organic contaminants in water via simply adsorbing. Here in this work, porous flower-like copper sulfide (CuS) grade sub-nanomaterials are successfully fabricated by simply mixing two inorganic salts. Furthermore, the as-prepared nano-adsorbents with auto-deposition property can create a super adsorption capability for organic contaminants in wastewater. We further study the adsorption/auto-deposition characteristics of porous flower-like CuS grade sub-nanomaterials systematically by using various organic dyes (methyl blue, crystal violet, lemon yellow, sunset yellow and amaranth) as target molecules. For instance, in a typical procedure, 0.8-mg methyl blue can be removed 100% via adding 10-mg porous flower-like CuS grade sub-nanomaterials sample in 30 min. Therefore, the adsorption efficiency can be enhanced by 55% and 26% in comparison with the adsorption efficiency of CuS micro pompons and micron particles, respectively. Additionally, the porous flower-like CuS grade sub-nanomaterials can self-deposite on the bottom of the solution within 3 h after adsorption has finished, and the deposition efficiency can be improved by 95% and 3.17 times in comparison with the deposition efficiency of CuS micro pompons and micron particles, respectively. Comparing with micron particles, the unique self-depositing characteristics of porous flower-like grade sub-nanomaterials are attributed to larger specific surface area, greater porosity and stronger electrostatic adsorption capacity. Remarkably, this work provides an effective method of effectively removing various organic dyes from wastewater.
      Corresponding author: Cui Qing-Qiang, cuiqingqiang@sdu.edu.cn
    • Funds: Project supported by the 2021 Laboratory Construction and Management Research Project of Shandong University, China (Grant No. sy20213202)
    [1]

    Srivastava S, Sinha R, Roy D 2004 Aquat. Toxicol. 66 319Google Scholar

    [2]

    Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D 2019 Dyes Pigm. 170 107591Google Scholar

    [3]

    Zhang H, Chen M, Wang D M, Xu L L, Liu X D 2016 Opt. Mater. Express 6 2573Google Scholar

    [4]

    Miao X, Tang Y, Wong C W 2015 Nature 518 483

    [5]

    Ghorai S, Sarkar A, Raoufi M, Panda A B, Schönherr H, Pal S 2014 ACS Appl. Mater. Interfaces 6 4766Google Scholar

    [6]

    Wu Z, Joo H, Lee K 2005 Chem. Eng. J. 112 227Google Scholar

    [7]

    Xie Y J, Yan B, Xu H L, Chen J, Liu Q X, Deng Y H, Zeng H B 2014 ACS Appl. Mater. Interfaces 6 8845Google Scholar

    [8]

    Feng M, You W, Wu Z S, Chen Q D, Zhan H B 2013 ACS Appl. Mater. Interfaces 5 12654Google Scholar

    [9]

    Yousefi M, Villar-Rodil S, Paredes J I, Moshfegh A Z 2019 J. Alloy. Compd. 809 151783Google Scholar

    [10]

    Zhan Y, Wan X, He S, Yang Q, He Y 2018 Chem. Eng. J. 333 132Google Scholar

    [11]

    Reddy P A K, Reddy P V L, Kwon E, Kim K, Akter T, Kalagara S 2016 Environ. Int. 91 94Google Scholar

    [12]

    Verdin A, Sahraoui A L H, Durand R 2004 Int. Biodeterior. Biodegrad. 53 65Google Scholar

    [13]

    Zhang X, Zhang P Y, Wu Z, Zhang L, Zeng G M, Zhou C J 2013 Colloids Surf., A 435 85Google Scholar

    [14]

    Yagub M T, Sen T K, Afroze S, Ang H M 2014 Adv. Colloid. Interfaces Sci. 209 172Google Scholar

    [15]

    Feng M, You W, Wu Z S, Chen Q D, Zhan H B 2013 ACS Appl. Mater. Inter. 5 12654

    [16]

    Massey A T, Gusain R, Kumari S, Khatri O P 2016 Ind. Eng. Chem. Res. 55 7124Google Scholar

    [17]

    Xie Y J, Yan B, Xu H L, et al. 2014 ACS Appl. Mater. Inter. 6 8845

    [18]

    Liao W L, Ma Y Q, Chen A Y, Yang Y L 2015 Chem. Eng. J. 271 232Google Scholar

    [19]

    Song H J, You S, Jia X H, Yang J 2015 Ceram. Int. 8 23

    [20]

    Bobbitt N S, Mendonca M L, Howarth A J, et al. 2017 Chem. Soc. Rev. 46 3357Google Scholar

    [21]

    Zhao W, Wang Z H, Zhou L, Liu N Q, Wang H X 2016 Front. Mater. Sci. Chin. 10 290Google Scholar

    [22]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin 62 158104Google Scholar

    [23]

    Mazaheri H, Ghaedi M, Asfaram A, Hajati S 2016 J. Mol. Liq. 219 667Google Scholar

    [24]

    Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N M D 2005 Carbon 43 153Google Scholar

    [25]

    Dettlaff-Weglikowska U, Skakalova V, Graupner R, et al. 2005 J. Am. Chem. Soc. 127 5125Google Scholar

    [26]

    Tseng C H, Wang C C, Chen C Y 2006 Nanotechnology 17 5602Google Scholar

    [27]

    Nduna M K, Lewis A E, Nortier P 2014 Colloids Surf., A 441 643Google Scholar

    [28]

    Borthakur P, Boruah P K, Das M R 2021 J. Environ. Chem. Eng. 9 104635Google Scholar

    [29]

    Gqebe S, Rodriguez-Pascual M, Lewis A 2016 J. S. Afr. Inst. Min. Metall. 116 575Google Scholar

    [30]

    Zha Z B, Wang S M, Zhang S H, Qu E Z, Ke H T, Wang J R, Dai Z F 2013 Nanoscale 5 3216Google Scholar

    [31]

    Ayodhya D, Venkatesham M, Kumari A S, et al. 2016 J. Exp. Nanosci. 11 418Google Scholar

    [32]

    Wang T J, Zhang H, Xu L L, Wang X L, Chen M 2017 Opt. Mater. Express 7 3863Google Scholar

    [33]

    Fan Y, Liu P F, Huang Z Y, Jiang T W, Yao K L, Han R 2015 J. Power Sources 280 30Google Scholar

    [34]

    Velasco L F, Guillet-Nicolas R, Dobos G, Thommes M, Lodewyckx P 2016 Carbon 96 753Google Scholar

    [35]

    Gao S Y, Liu H Y, Geng K R, Wei X J 2015 Nano Energy 12 785Google Scholar

    [36]

    Eid K, Wang H J, He P, Wang K M, Ahamad T, Alshehri S M, Yamauchi Y, Wang L 2015 Nanoscale 7 16860Google Scholar

    [37]

    Wu K, Zhang Q, Sun D M, Zhu X S, Chen Y, Lu T H, Tang Y W 2015 Int. J. Hydrogen Energy 40 6530Google Scholar

    [38]

    Fu G T, Wu K, Lin J, Tang Y W, Chen Y, Zhou Y M, Lu T H 2013 J. Phys. Chem. C. 117 9826Google Scholar

    [39]

    Wang T J, Wang D M, Zhang H, Wang X L, Chen M 2017 Opt. Mater. Express 7 924Google Scholar

    [40]

    Gao P X, Ding Y, Mai W, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700Google Scholar

  • 图 1  (a), (b)多孔级次纳米花; (c), (d)微米绒球; (e), (f)微米颗粒的SEM

    Figure 1.  (a), (b) SEM image of porous grade sub-nanoflowers; (c), (d) SEM image of micron pompon; (e), (f) SEM image of micron particles.

    图 2  (a) 多孔级次纳米花的S和Cu的能量散射谱; (b) mapping选区SEM图; (c), (d) 分别为S和Cu元素分布

    Figure 2.  (a) Energy scattering spectra of S and Cu in porous grade sub-nanoflowers; (b) mapping selected SEM image; (c), (d) S and Cu elements mapping, respectively.

    图 3  多孔级次纳米花CuS的TEM图 (a), (b), (c) 分辨率依次增大; (d) 选区电子衍图谱

    Figure 3.  (a), (b), (c) The typical low and enlarged TEM image of porous grade sub-nanoflowers CuS; (d) the corresponding selected area electron diffraction (SAED) pattern.

    图 4  CuS微米颗粒、微米绒球、多孔级次纳米花的XRD谱

    Figure 4.  XRD spectra of CuS micron pompon、micron particles and porous grade sub-nanoflowers.

    图 5  级次纳米花的XPS谱 (a) Cu; (b) S

    Figure 5.  XPS spectra of grade sub-nanoflowers: (a) Cu; (b) S.

    图 6  (a), (b), (c) 分别为多孔级次纳米花、微米颗粒、微米绒球的氮气吸脱附曲线; (d), (e), (f)为对应的孔径分布曲线

    Figure 6.  (a), (b), (c) Nitrogen desorption curve of porous grade sub-nanoflowers, micron pompon and micron particles, respectively; (d), (e), (f) the corresponding aperture distribution curve.

    图 7  (a), (b)分别为纳米枝晶正在生长为纳米花瓣时的TEM图和SEM图; (c)硫源释放S2– 速率过快导致CuS直接团聚而未能得到纳米花瓣; (d)自组装过程因能量不足导致大量纳米片散落

    Figure 7.  (a), (b) TEM and SEM images when nanocrystals are growing into nanocrystals, respectively; (c) the S2– release rate of sulfur source is too fast, which leads to direct aggregation of CuS and fails to obtain nanopetals; (d) a large number of nanosheets were scattered due to lack of energy during the self-assembly process.

    图 8  (a) CuS多孔级次纳米花, (b) CuS微米绒球, (c) CuS微米颗粒材料吸附MB溶液后上清液吸收谱随吸附时间的变化曲线; (d)表征三份材料对MB的吸附过程

    Figure 8.  The varied absorption spectra of supernatant after adding (a) porous grade sub-nanoflowers, (b) micron pompon and (c) micron particle material to adsorb MB with changing adsorption time; (d) the adsorption process of MB by adding three materials, respectively.

    图 9  溶液体系的吸收谱 (a)静置1 h, (b)静置3 h. 插图为吸附体系实物照片(批注:需要把曲线的文字注释和右上角插图中的文字注释中的“微米球”改为“微米绒球”,把“微米椭球”改为“微米颗粒”)

    Figure 9.  The absorption spectra of the solution system after standing for (a)1 h and (b)3 h; The inset is a physical photo of the adsorption system.

    图 10  (a)多孔级次纳米花, (b)微米绒球和(c)微米颗粒吸附MB染料分子后的SEM

    Figure 10.  SEM images of (a) porous grade sub-nanoflowers, (b) micron pompon, and (c) micron particle material after adsorbing MB dye molecules.

    图 11  (a)多孔级次纳米花对结晶紫, (b)柠檬黄, (c)日落黄, (d)苋菜红的吸附过程中测试离心液的吸收谱线

    Figure 11.  The absorption spectra of (a) crystal violet, (b) lemon yellow, (c)sunset yellow and (d)amaranth by adding porous grade sub-nanoflowers as nano-adsorbents via centrifugal treatment.

    图 12  (a)为苋菜红、日落黄、柠檬黄和结晶紫的原始吸收谱; (b), (c)分别为加入多孔级次纳米花材料静置30 min和3 h后溶液吸收谱

    Figure 12.  (a) The original absorption spectra of amaranth, sunset yellow, lemon yellow and crystal violet; (b), (c) the absorption spectra of the solution after adding porous grade sub-nanoflowers materials for 30 min and 3 h, respectively.

    表 1  三份样品的Zeta电势

    Table 1.  Zeta potential of three samples.

    样品Zeta电势/mV
    级次纳米花–13.3
    微米绒球–2.29
    微米颗粒–1.15
    DownLoad: CSV
  • [1]

    Srivastava S, Sinha R, Roy D 2004 Aquat. Toxicol. 66 319Google Scholar

    [2]

    Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D 2019 Dyes Pigm. 170 107591Google Scholar

    [3]

    Zhang H, Chen M, Wang D M, Xu L L, Liu X D 2016 Opt. Mater. Express 6 2573Google Scholar

    [4]

    Miao X, Tang Y, Wong C W 2015 Nature 518 483

    [5]

    Ghorai S, Sarkar A, Raoufi M, Panda A B, Schönherr H, Pal S 2014 ACS Appl. Mater. Interfaces 6 4766Google Scholar

    [6]

    Wu Z, Joo H, Lee K 2005 Chem. Eng. J. 112 227Google Scholar

    [7]

    Xie Y J, Yan B, Xu H L, Chen J, Liu Q X, Deng Y H, Zeng H B 2014 ACS Appl. Mater. Interfaces 6 8845Google Scholar

    [8]

    Feng M, You W, Wu Z S, Chen Q D, Zhan H B 2013 ACS Appl. Mater. Interfaces 5 12654Google Scholar

    [9]

    Yousefi M, Villar-Rodil S, Paredes J I, Moshfegh A Z 2019 J. Alloy. Compd. 809 151783Google Scholar

    [10]

    Zhan Y, Wan X, He S, Yang Q, He Y 2018 Chem. Eng. J. 333 132Google Scholar

    [11]

    Reddy P A K, Reddy P V L, Kwon E, Kim K, Akter T, Kalagara S 2016 Environ. Int. 91 94Google Scholar

    [12]

    Verdin A, Sahraoui A L H, Durand R 2004 Int. Biodeterior. Biodegrad. 53 65Google Scholar

    [13]

    Zhang X, Zhang P Y, Wu Z, Zhang L, Zeng G M, Zhou C J 2013 Colloids Surf., A 435 85Google Scholar

    [14]

    Yagub M T, Sen T K, Afroze S, Ang H M 2014 Adv. Colloid. Interfaces Sci. 209 172Google Scholar

    [15]

    Feng M, You W, Wu Z S, Chen Q D, Zhan H B 2013 ACS Appl. Mater. Inter. 5 12654

    [16]

    Massey A T, Gusain R, Kumari S, Khatri O P 2016 Ind. Eng. Chem. Res. 55 7124Google Scholar

    [17]

    Xie Y J, Yan B, Xu H L, et al. 2014 ACS Appl. Mater. Inter. 6 8845

    [18]

    Liao W L, Ma Y Q, Chen A Y, Yang Y L 2015 Chem. Eng. J. 271 232Google Scholar

    [19]

    Song H J, You S, Jia X H, Yang J 2015 Ceram. Int. 8 23

    [20]

    Bobbitt N S, Mendonca M L, Howarth A J, et al. 2017 Chem. Soc. Rev. 46 3357Google Scholar

    [21]

    Zhao W, Wang Z H, Zhou L, Liu N Q, Wang H X 2016 Front. Mater. Sci. Chin. 10 290Google Scholar

    [22]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin 62 158104Google Scholar

    [23]

    Mazaheri H, Ghaedi M, Asfaram A, Hajati S 2016 J. Mol. Liq. 219 667Google Scholar

    [24]

    Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N M D 2005 Carbon 43 153Google Scholar

    [25]

    Dettlaff-Weglikowska U, Skakalova V, Graupner R, et al. 2005 J. Am. Chem. Soc. 127 5125Google Scholar

    [26]

    Tseng C H, Wang C C, Chen C Y 2006 Nanotechnology 17 5602Google Scholar

    [27]

    Nduna M K, Lewis A E, Nortier P 2014 Colloids Surf., A 441 643Google Scholar

    [28]

    Borthakur P, Boruah P K, Das M R 2021 J. Environ. Chem. Eng. 9 104635Google Scholar

    [29]

    Gqebe S, Rodriguez-Pascual M, Lewis A 2016 J. S. Afr. Inst. Min. Metall. 116 575Google Scholar

    [30]

    Zha Z B, Wang S M, Zhang S H, Qu E Z, Ke H T, Wang J R, Dai Z F 2013 Nanoscale 5 3216Google Scholar

    [31]

    Ayodhya D, Venkatesham M, Kumari A S, et al. 2016 J. Exp. Nanosci. 11 418Google Scholar

    [32]

    Wang T J, Zhang H, Xu L L, Wang X L, Chen M 2017 Opt. Mater. Express 7 3863Google Scholar

    [33]

    Fan Y, Liu P F, Huang Z Y, Jiang T W, Yao K L, Han R 2015 J. Power Sources 280 30Google Scholar

    [34]

    Velasco L F, Guillet-Nicolas R, Dobos G, Thommes M, Lodewyckx P 2016 Carbon 96 753Google Scholar

    [35]

    Gao S Y, Liu H Y, Geng K R, Wei X J 2015 Nano Energy 12 785Google Scholar

    [36]

    Eid K, Wang H J, He P, Wang K M, Ahamad T, Alshehri S M, Yamauchi Y, Wang L 2015 Nanoscale 7 16860Google Scholar

    [37]

    Wu K, Zhang Q, Sun D M, Zhu X S, Chen Y, Lu T H, Tang Y W 2015 Int. J. Hydrogen Energy 40 6530Google Scholar

    [38]

    Fu G T, Wu K, Lin J, Tang Y W, Chen Y, Zhou Y M, Lu T H 2013 J. Phys. Chem. C. 117 9826Google Scholar

    [39]

    Wang T J, Wang D M, Zhang H, Wang X L, Chen M 2017 Opt. Mater. Express 7 924Google Scholar

    [40]

    Gao P X, Ding Y, Mai W, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700Google Scholar

  • [1] Wang Kang-Ying, Ma Cai-Yuan, Yu Hui-Min, Zhang Hai-Tao, Cen Jian-Yong, Wang Ying-Ying, Pan Jun-Xing, Zhang Jin-Jun. The self-assembly behavior of polymer/nanorods hybrid system under oscillation field. Acta Physica Sinica, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [2] Yang Bei, Li Qian, Liu Hua-Jie, Fan Chun-Hai. Recent progress of frame nucleic acids studies towards atomic fabrications. Acta Physica Sinica, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [3] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] Wang Chen-Chao, Wu Tai-Quan, Wang Xin-Yan, Jiang Ying. Structure of NO dimer multilayer on Rh(111). Acta Physica Sinica, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [5] Li Bai, Wu Tai-Quan, Wang Chen-Chao, Jiang Ying. Structure of BP3S monolayer on Au(111). Acta Physica Sinica, 2016, 65(21): 216301. doi: 10.7498/aps.65.216301
    [6] Xiao Shi-Yan, Liang Hao-Jun. DNA and DNA computation based on toehold-mediated strand-displacement reactions. Acta Physica Sinica, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [7] Zhang Tian-Hui, Cao Jing-Sheng, Liang Ying, Liu Xiang-Yang. Colloids in the study of fundamental physics. Acta Physica Sinica, 2016, 65(17): 176401. doi: 10.7498/aps.65.176401
    [8] Yu Sen-Jiang. Atomic force microscopy studies on self-organized wrinkles in constrained metallic films deposited on silicone oil substrates. Acta Physica Sinica, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [9] Wu Tai-Quan, Wang Xin-Yan, Jiao Zhi-Wei, Luo Hong-Lei, Zhu Ping. Structure of CO monolayer on Cu(100). Acta Physica Sinica, 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [10] Zhao Juan, Hu Hui-Fang, Zeng Ya-Ping, Cheng Cai-Ping. Preparation of flower-like CuS hierarchical nanostructures and its visible light photocatalytic performance. Acta Physica Sinica, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [11] Liu Jia, Xu Ling-Ling, Zhang Hai-Lin, Lü Wei, Zhu Lin, Gao Hong, Zhang Xi-Tian. One-step hydrothermal process for self-assembly of zinc oxide nanorods array on Al-doped ZnO nanoplate surface. Acta Physica Sinica, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [12] Zhang Bao-Hua, Guo Fu-Qiang, Sun Yi, Wang Jun-Jun, Li Yan-Qing, Zhi Li-Li. Solvothermal recrystallized synthesis of one-dimensional CdS nanorods self-assembled from nanoparticles. Acta Physica Sinica, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [13] Liu Qing, Wang Ming, Guo Wen-Hua, Yan Hai-Tao, Yu Ping. A fiber decorated by colloidal photonic crystal. Acta Physica Sinica, 2010, 59(10): 7086-7090. doi: 10.7498/aps.59.7086
    [14] Huang Yuan, Liu Hong, Zhang Qing-Chuan. Detection of the self-assembly of poly-(N-isopropylacrylamide) on gold based on microcantilever sensor. Acta Physica Sinica, 2009, 58(9): 6122-6127. doi: 10.7498/aps.58.6122
    [15] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [16] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [17] Xia A-Gen, Yang Bo, Jin Jin-Sheng, Zhang Yi-Wen, Tang Fan, Ye Gao-Xiang. Ordered structures and self-organized phenomena in Au films deposited on silicone oil surfaces. Acta Physica Sinica, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [18] Wang Hao, Zeng Gu-Cheng, Liao Chang-Jun, Cai Ji-Ye, Zheng Shu-Wen, Fan Guang-Han, Chen Yong, Liu Song-Hao. Study on the metamorphosis of InP self-organized islands grown on GaxxIn1-x1-xP buffer layers. Acta Physica Sinica, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [19] Yang Hai-Tao, Shen Cheng-Min, Du Shi-Xuan, Su Yi-Kun, Wang Yan-Guo, Wang Yu-Ping, Gao Hong-Jun. Ordered arrays and magnetic properties of cobalt nanoparticles. Acta Physica Sinica, 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
    [20] Shen Cheng-Min, Su Yi-Kun, Yang Hai-Tao, Yang Tian-Zhong, Wang Yu-Ping, Gao Hong-Jun. Self-assembled two-dimensional structure of magnetic cobalt nanocrystals. Acta Physica Sinica, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
Metrics
  • Abstract views:  4830
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2021
  • Accepted Date:  01 July 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回