Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TCAD simulation analysis of vertical parasitic effect induced by pulsed γ- ray in NMOS from 180 nm to 40 nm technology nodes

Li Jun-Lin Li Rui-Bin Ding Li-Li Chen Wei Liu Yan

Liu Zhen, Yang Xiao-Chao, Zhang Xiao-Xin, Zhang Shen-Yi, Yu Qing-Long, Zhang Xin, Xue Bing-Sen, Guo Jian-Guang, Zong Wei-Guo, Shen Guo-Hong, Bai Chao-Ping, Zhou Ping, Ji Wen-Tao. On-orbit cross-calibration and assimilation for relativistic electron observations from FengYun 4A and GOES-13. Acta Phys. Sin., 2019, 68(15): 159401. doi: 10.7498/aps.68.20190433
Citation: Liu Zhen, Yang Xiao-Chao, Zhang Xiao-Xin, Zhang Shen-Yi, Yu Qing-Long, Zhang Xin, Xue Bing-Sen, Guo Jian-Guang, Zong Wei-Guo, Shen Guo-Hong, Bai Chao-Ping, Zhou Ping, Ji Wen-Tao. On-orbit cross-calibration and assimilation for relativistic electron observations from FengYun 4A and GOES-13. Acta Phys. Sin., 2019, 68(15): 159401. doi: 10.7498/aps.68.20190433

TCAD simulation analysis of vertical parasitic effect induced by pulsed γ- ray in NMOS from 180 nm to 40 nm technology nodes

Li Jun-Lin, Li Rui-Bin, Ding Li-Li, Chen Wei, Liu Yan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The parasitic effect inside metal oxide field effect transistor regarded as the basic structure of large scale digital circuits, has long been considered as an important factor affecting the disturbance, upset and latchup of integrated circuits in pulsed γ-ray radiation environment. To investigate the turn-on mechanism of vertical parasitic effect in NMOSFET induced by pulsed γ-ray radiation, the 40 nm, 90 nm and 180 nm NMOSFET device models are constructed by TCAD and the normal electrical characteristics are calibrated. The trend of vertical parasitic triode current gain, the turn-on conditions of vertical parasitic triode and their influence on working state of NMOSFET are obtained. The simulation results are shown below. 1) The disturbance of well potential inside NMOSFET induced by pulsed γ-ray radiation is the main reason for the turn-on of vertical parasitic triode. 2) When vertical parasitic triode is turn-on, the large secondary photocurrent will be generated inside NMOSFET which will affect the working state of the transistor. 3) The current gain of vertical parasitic triode in NMOSFET decreases with the technology node decreasing. The results provide a theoretical basis for studying the transient ionizing radiation effects of electronic devices.
      PACS:
      94.05.Sd(Space weather)
      94.30.-d(Physics of the magnetosphere)
      94.30.Hn(Energetic trapped particles)
      94.80.+g(Instrumentation for space plasma physics, ionosphere, and magnetosphere)
      Corresponding author: Li Jun-Lin, lijunlin@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11835006)
    [1]

    Wirth J L, Rogers S C 1964 IEEE Trans. Nucl. Sci. 11 24Google Scholar

    [2]

    Enlow E W, Alexander D R 1988 IEEE Trans. Nucl. Sci. 35 1467Google Scholar

    [3]

    Fjeldly T A, Deng Y Q, Shur M S, Hjalmarson H P, Muyshondt A, Ytterdal T 2001 IEEE Trans. Nucl. Sci. 48 1721Google Scholar

    [4]

    Alexander D R 2003 IEEE Trans. Nucl. Sci. 50 565Google Scholar

    [5]

    赖祖武 1998 抗辐射电子学(北京: 国防工业出版社) 第288—300页

    Lai Z W 1998 Radiation Electronics (Beijing: Defense Industry Press) pp288–300 (in Chinese)

    [6]

    Lewis C 1995 Transient Radiation Effects on Electronics (Alexandria: Defense Nuclear Agency) pp200–245

    [7]

    马强, 林东生, 范如玉, 陈伟, 杨善潮, 龚建成, 王桂珍, 齐超 2010 原子能科学技术 44 545Google Scholar

    Ma Q, Lin D S, Fan R Y, Chen W, Yang S C, Gong J C, Wang G Z, Qi C 2010 Atomic Energy Science and Technology 44 545Google Scholar

    [8]

    Oh S C, Lee N H, Lee H H 2012 12th International Conference on Control, Automation and Systems Jeju Island, Korea, October 17–21, 2012 p1233

    [9]

    王桂珍, 林东生, 齐超, 白小燕, 杨善潮, 李瑞宾, 马强, 金晓明, 刘岩 2014 原子能科学技术 48 2165Google Scholar

    Wang G Z, Lin D S, Qi C, Bai X Y, Yang S C, Li R B, Ma Q, Jin X M, Liu Y 2014 Atomic Energy Science and Technology 48 2165Google Scholar

    [10]

    Massengill L W, Diehl-Nagle S E 1985 IEEE Trans. Nucl. Sci. 32 4026Google Scholar

    [11]

    Massengill L W, Diehl-Nagle S E 1986 IEEE Trans. Nucl. Sci. 33 1541Google Scholar

    [12]

    Li J L, Chen W, Li R B, Wang G Z, Yang S C 2019 3rd Internaltional Conference on Radiation Effects of Electronic Devices Chongqing, China, May 29–31, 2019 pp1–4

    [13]

    Boselli G, Reddy V, Duvvury C 2005 43rd Annual International Reliability Physics Symposium San Jose, USA, April 17–21, 2005 p137

    [14]

    Li R B, Chen W, Lin D S, Yang S C, Bai X Y, Wang G Z, Liu Y, Qi C, Ma Q 2012 Sci. Chin. Tech. Sci. 55 3242Google Scholar

    [15]

    Keshavarz A A, Fischer T A, Dawes W R, Hawkins C F 1988 IEEE Trans. Nucl. Sci. 35 1422Google Scholar

    [16]

    Olson B D, Amusan O A, Dasgupta S, Massengill L W, Witulski A F, Bhuva B L, Alles M L, Warrenm K M, Ball D R 2007 IEEE Trans. Nucl. Sci. 54 894Google Scholar

    [17]

    Ahlbin J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar

    [18]

    金晓明, 范如玉, 陈伟, 王桂珍, 林东生, 杨善潮, 白小燕 2010 原子能科学技术 44 1487Google Scholar

    Jin X M, Fan R Y, Chen W, Wang G Z, Lin D S, Yang S C, Bai X Y 2010 Atomic Energy Science and Technology 44 1487Google Scholar

    [19]

    Calienes W, Reis R, Anghel C, Vladimirescu A 2014 IEEE 57th International Midwest Symposium on Circuits and Systems Texas, USA, August 3–6, 2014 p655

    [20]

    Wunsch T F, Hash G L, Hewlett F W, Treece R K 1991 IEEE Trans. Nucl. Sci. 38 1392Google Scholar

    [21]

    Dasgupta S 2007 M. S. Thesis (Nashville: Vanderbilt University)

    [22]

    Atkinson N M 2010 M. S. Thesis (Nashville: Vanderbilt University)

    [23]

    Li R B, Wang C H, He C H, Chen W, Li J L, Qi C, Liu Y 2020 Nucl. Instrum. Meth. B 470 32Google Scholar

    [24]

    Neamen D A 2007 Semiconductor Physics and Devices Basic Principles (Beijing: Publishing House of Electronics Industry) pp284–285

    期刊类型引用(5)

    1. 张晓芳,白钧水,潘业欣,常博. 灾害性空间天气事件预警分级探讨. 航天器环境工程. 2024(03): 260-269 . 百度学术
    2. 张伟杰,沈国红,张珅毅,张贤国,叶依众. 一种基于TOF×E方法的空间中能离子探测器设计与仿真. 空间科学学报. 2023(02): 340-351 . 百度学术
    3. 张伟杰,张珅毅,张贤国,叶依众. 用于空间中高能离子探测的飞行时间(TOF)质谱仪——发展现状与展望. 地球物理学报. 2022(10): 3743-3758 . 百度学术
    4. YANG Zhe,SHEN Guohong,JING Tao. Development of High-energy Particle Detectors for Space Exploration. 空间科学学报. 2022(06): 1171-1184 . 百度学术
    5. 廖偲含,王宏伟,鲁同所,杨兴,匡攀. 利用小波分析研究近地空间高能电子的周期变化特征. 天文学报. 2021(03): 69-86 . 百度学术

    其他类型引用(0)

  • 图 1  NMOS管寄生效应示意图

    Figure 1.  Parasitic effect schematic of NMOS.

    图 2  NMOS管二维剖面

    Figure 2.  Two-dimensional profile of NMOS.

    图 3  NMOS管沟道处掺杂

    Figure 3.  Channel doping of NMOS.

    图 4  40 nm NMOS管常态特性校准曲线 (a) 转移特性曲线; (b) 输出特性曲线

    Figure 4.  Normal characteristic calibration curve of 40 nm NMOS: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 6  180 nm NMOS管常态特性校准曲线 (a) 转移特性曲线; (b) 输出特性曲线

    Figure 6.  Normal characteristic calibration curve of 180 nm NMOS: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 5  90 nm NMOS管常态特性校准曲线 (a)转移特性曲线; (b) 输出特性曲线

    Figure 5.  Normal characteristic calibration curve of 90 nm NMOS: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 7  NMOS管截止时内部瞬时光电流 (a) 源极、漏极瞬时光电流; (b) P阱、衬底瞬时光电流

    Figure 7.  Photocurrent of NMOS when channel is cut-off: (a) Photocurrent of source and drain; (b) photocurrent of P-well and substrate.

    图 8  NMOS管导通时内部光电流 (a) 源极、漏极瞬时光电流; (b) P阱、衬底瞬时光电流

    Figure 8.  Photocurrent of NMOS when channel is turn-on: (a) Photocurrent of source and drain; (b) photocurrent of P-well and substrate.

    图 9  脉冲γ射线剂量率为2×107Gy(Si)/s时NMOS管电势分布随时间变化 (a) 20 ns; (b) 70 ns; (c) 120 ns; (d) 200 ns

    Figure 9.  Variation of NMOS potential distribution over time when dose rate of transient γ-ray is 2×107Gy(Si)/s: (a) 20 ns; (b) 70 ns; (c) 120 ns; (d) 200 ns.

    图 10  脉冲γ射线剂量率为1×1010Gy(Si)/s时NMOS管电势分布随时间变化 (a) 20 ns; (b) 70 ns; (c) 120 ns; (d) 200 ns

    Figure 10.  Variation of NMOS potential distribution over time when dose rate of transient γ-ray is 1×1010Gy(Si)/s: (a) 20 ns; (b) 70 ns; (c) 120 ns; (d) 200 ns.

    图 11  NMOS管截止时内部瞬时光电流

    Figure 11.  Photocurrent of NMOS when channel is cut-off.

    图 12  NMOS管导通时内部瞬时光电流

    Figure 12.  Photocurrent of NMOS when channel is turn-on.

    图 13  纵向寄生三极管电流增益

    Figure 13.  Gain of the vertial NPN triode vs voltage of pwell.

    图 14  共发射极电流增益随集电极电流变化趋势

    Figure 14.  Tendency of current gain of the common emitter to the current of collector.

    表 1  不同尺寸NMOS管结构参数与工艺参数

    Table 1.  Structure and process parameters of NMOS with different feature size.

    工艺节点λ/nm沟道长度L/nm沟道宽度W/nm源漏掺杂/cm3晕掺杂/cm3多晶硅掺杂/cm3阈值掺杂/cm3漏电掺杂/cm3
    40401202 × 10201.5 × 10192 × 10207.5 × 10187.5 × 1018
    90802002 × 10201 × 10182 × 10208.2 × 10188 × 1018
    1801805401 × 10208 × 10171 × 10208 × 10187 × 1018
    DownLoad: CSV
  • [1]

    Wirth J L, Rogers S C 1964 IEEE Trans. Nucl. Sci. 11 24Google Scholar

    [2]

    Enlow E W, Alexander D R 1988 IEEE Trans. Nucl. Sci. 35 1467Google Scholar

    [3]

    Fjeldly T A, Deng Y Q, Shur M S, Hjalmarson H P, Muyshondt A, Ytterdal T 2001 IEEE Trans. Nucl. Sci. 48 1721Google Scholar

    [4]

    Alexander D R 2003 IEEE Trans. Nucl. Sci. 50 565Google Scholar

    [5]

    赖祖武 1998 抗辐射电子学(北京: 国防工业出版社) 第288—300页

    Lai Z W 1998 Radiation Electronics (Beijing: Defense Industry Press) pp288–300 (in Chinese)

    [6]

    Lewis C 1995 Transient Radiation Effects on Electronics (Alexandria: Defense Nuclear Agency) pp200–245

    [7]

    马强, 林东生, 范如玉, 陈伟, 杨善潮, 龚建成, 王桂珍, 齐超 2010 原子能科学技术 44 545Google Scholar

    Ma Q, Lin D S, Fan R Y, Chen W, Yang S C, Gong J C, Wang G Z, Qi C 2010 Atomic Energy Science and Technology 44 545Google Scholar

    [8]

    Oh S C, Lee N H, Lee H H 2012 12th International Conference on Control, Automation and Systems Jeju Island, Korea, October 17–21, 2012 p1233

    [9]

    王桂珍, 林东生, 齐超, 白小燕, 杨善潮, 李瑞宾, 马强, 金晓明, 刘岩 2014 原子能科学技术 48 2165Google Scholar

    Wang G Z, Lin D S, Qi C, Bai X Y, Yang S C, Li R B, Ma Q, Jin X M, Liu Y 2014 Atomic Energy Science and Technology 48 2165Google Scholar

    [10]

    Massengill L W, Diehl-Nagle S E 1985 IEEE Trans. Nucl. Sci. 32 4026Google Scholar

    [11]

    Massengill L W, Diehl-Nagle S E 1986 IEEE Trans. Nucl. Sci. 33 1541Google Scholar

    [12]

    Li J L, Chen W, Li R B, Wang G Z, Yang S C 2019 3rd Internaltional Conference on Radiation Effects of Electronic Devices Chongqing, China, May 29–31, 2019 pp1–4

    [13]

    Boselli G, Reddy V, Duvvury C 2005 43rd Annual International Reliability Physics Symposium San Jose, USA, April 17–21, 2005 p137

    [14]

    Li R B, Chen W, Lin D S, Yang S C, Bai X Y, Wang G Z, Liu Y, Qi C, Ma Q 2012 Sci. Chin. Tech. Sci. 55 3242Google Scholar

    [15]

    Keshavarz A A, Fischer T A, Dawes W R, Hawkins C F 1988 IEEE Trans. Nucl. Sci. 35 1422Google Scholar

    [16]

    Olson B D, Amusan O A, Dasgupta S, Massengill L W, Witulski A F, Bhuva B L, Alles M L, Warrenm K M, Ball D R 2007 IEEE Trans. Nucl. Sci. 54 894Google Scholar

    [17]

    Ahlbin J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar

    [18]

    金晓明, 范如玉, 陈伟, 王桂珍, 林东生, 杨善潮, 白小燕 2010 原子能科学技术 44 1487Google Scholar

    Jin X M, Fan R Y, Chen W, Wang G Z, Lin D S, Yang S C, Bai X Y 2010 Atomic Energy Science and Technology 44 1487Google Scholar

    [19]

    Calienes W, Reis R, Anghel C, Vladimirescu A 2014 IEEE 57th International Midwest Symposium on Circuits and Systems Texas, USA, August 3–6, 2014 p655

    [20]

    Wunsch T F, Hash G L, Hewlett F W, Treece R K 1991 IEEE Trans. Nucl. Sci. 38 1392Google Scholar

    [21]

    Dasgupta S 2007 M. S. Thesis (Nashville: Vanderbilt University)

    [22]

    Atkinson N M 2010 M. S. Thesis (Nashville: Vanderbilt University)

    [23]

    Li R B, Wang C H, He C H, Chen W, Li J L, Qi C, Liu Y 2020 Nucl. Instrum. Meth. B 470 32Google Scholar

    [24]

    Neamen D A 2007 Semiconductor Physics and Devices Basic Principles (Beijing: Publishing House of Electronics Industry) pp284–285

  • [1] Tang Xiu-Xing, Chen Hong-Yue, Wang Jing-Jing, Wang Zhi-Jun, Zang Du-Yang. Marangoni effect of surfactant droplet in transition boiling and formation of secondary droplet. Acta Physica Sinica, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [2] Zhang Xiao-Li, Wang Qing-Wei, Yao Wen-Xiu, Shi Shao-Ping, Zheng Li-Ang, Tian Long, Wang Ya-Jun, Chen Li-Rong, Li Wei, Zheng Yao-Hui. Influence of thermal lens effect on second harmonic process in semi-monolithic cavity scheme. Acta Physica Sinica, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] Analysis of vertical parasitic effect induced by pulsed γ- ray through TCAD Simulation in NMOS from 180nm to 40nm technology node. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211691
    [4] Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun. Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [5] Li Ming-Liang, Deng Ming-Xi, Gao Guang-Jian. Influences of the interfacial properties on second-harmonic generation by primary circumferential ultrasonic guided wave propagation in composite tube. Acta Physica Sinica, 2016, 65(19): 194301. doi: 10.7498/aps.65.194301
    [6] Zhou Hang, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Ren Di-Yuan, Yu Xue-Feng. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Physica Sinica, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [7] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [8] Wu Chuan-Lu, Ma Ying, Jiang Li-Mei, Zhou Yi-Chun, Li Jian-Cheng. Computer simulation of electric properties of metal-ferroelectric-substrate structured ferroelectric field effect transistor under ionizing radiation. Acta Physica Sinica, 2014, 63(21): 216102. doi: 10.7498/aps.63.216102
    [9] Ma Wu-Ying, Lu Wu, Guo Qi, He Cheng-Fa, Wu Xue, Wang Xin, Cong Zhong-Chao, Wang Bo, Maria. Analyses of ionization radiation damage and dose rate effect of bipolar voltage comparator. Acta Physica Sinica, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [10] Liu Bi-Wei, Chen Jian-Jun, Chen Shu-Ming, Chi Ya-Qin. NPN bipolar effect and its influence on charge sharing in a tripe well CMOS technology with n+ deep well. Acta Physica Sinica, 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [11] Bao Jun-Lin, Lin Li-Yan, He Liang, Du Lei. Noise as a characteriscic for current transmitting rateof optoelectronic coupled devicesfor ionization radiation damage. Acta Physica Sinica, 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [12] Wang Yi-Yuan, Lu Wu, Ren Di-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa, Gao Bo. Degradation and dose rate effects of bipolar linearregulator on ionizing radiation. Acta Physica Sinica, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [13] Jiang Wen-Long, Meng Zhao-Hui, Cong Lin, Wang Jin, Wang Li-Zhong, Han Qiang, Meng Fan-Chao, Gao Yong-Hui. The role of magnetic fields on the efficiency of OLED of double quantum well structures. Acta Physica Sinica, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [14] Chen Wei-Hua, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, He Liang, Zhang Tian-Fu, Zhang Xue. A model considering the ionizing radiation effects in MOS structure. Acta Physica Sinica, 2009, 58(6): 4090-4095. doi: 10.7498/aps.58.4090
    [15] Sun Guang-Ai, Hu Gang-Yi, Yang Mo-Hua, Xu Shi-Liu, Zhang Zheng-Fan, Liu Yu-Kui, He Kai-Quan, Zhong Yi. Study of conductive property for a N-VDMOS interface trap under X-ray radiation. Acta Physica Sinica, 2008, 57(3): 1872-1877. doi: 10.7498/aps.57.1872
    [16] Xu Zhi-Jun, Li Peng-Hua. Second interference and amplification effect of a Bose-condensed gas. Acta Physica Sinica, 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [17] Yuan Xian-Zhang, Lu Wei, Li Ning, Chen Xiao-Shuang, Shen Xue-Chu, Zi Jian. Photocurrent spectra of very long wavelength GaAs/AlGaAs quantum well infrared photodetector. Acta Physica Sinica, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [18] WEI GUANG-PU. X-RAY IRRADIATION EFFECT IN a-Si SOLAR CELL AND ITS BELOW-GAP PHOTOCURRENT SPECTROSCOPY OBSERVATION. Acta Physica Sinica, 1992, 41(3): 485-490. doi: 10.7498/aps.41.485
    [19] ZHANG LIAN-FANG, ZHAO WEN-ZHENG, SHANG REN-CHENG, PAN LI, WANG SHI-LIANG, WEN KE-LING, CHEN DIE-YAN. STUDY OF Ne AUTOIONISING STATES WITH PULSED ELECTRIC FIELD OPTOGALVANIC SPECTROSCOPY. Acta Physica Sinica, 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
    [20] ZHU ANG-RU, WU XI-LIN. THE MECHANISM OF THE SECONDARY ION EMISSION INVESTIGATED BY THE EFFECT OF ENERGETIC ELECTRONS. Acta Physica Sinica, 1984, 33(10): 1475-1479. doi: 10.7498/aps.33.1475
  • 期刊类型引用(5)

    1. 张晓芳,白钧水,潘业欣,常博. 灾害性空间天气事件预警分级探讨. 航天器环境工程. 2024(03): 260-269 . 百度学术
    2. 张伟杰,沈国红,张珅毅,张贤国,叶依众. 一种基于TOF×E方法的空间中能离子探测器设计与仿真. 空间科学学报. 2023(02): 340-351 . 百度学术
    3. 张伟杰,张珅毅,张贤国,叶依众. 用于空间中高能离子探测的飞行时间(TOF)质谱仪——发展现状与展望. 地球物理学报. 2022(10): 3743-3758 . 百度学术
    4. YANG Zhe,SHEN Guohong,JING Tao. Development of High-energy Particle Detectors for Space Exploration. 空间科学学报. 2022(06): 1171-1184 . 百度学术
    5. 廖偲含,王宏伟,鲁同所,杨兴,匡攀. 利用小波分析研究近地空间高能电子的周期变化特征. 天文学报. 2021(03): 69-86 . 百度学术

    其他类型引用(0)

Metrics
  • Abstract views:  4286
  • PDF Downloads:  52
  • Cited By: 5
Publishing process
  • Received Date:  10 September 2021
  • Accepted Date:  12 October 2021
  • Available Online:  14 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回