Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical calculation of fiber cavity coupling silicon carbide membrance

Zhou Ji-Yang Li Qiang Xu Jin-Shi Li Chuan-Feng Guo Guang-Can

Citation:

Theoretical calculation of fiber cavity coupling silicon carbide membrance

Zhou Ji-Yang, Li Qiang, Xu Jin-Shi, Li Chuan-Feng, Guo Guang-Can
PDF
HTML
Get Citation
  • Single spin color centers in solid materials are one of the promising candidates for quantum information processing, and attract a great deal of interest. Nowadays, single spin color centers in silicon carbide, such as divacancies and silicon vacancies have been developed rapidly, because they not only have similar properties of the NV centers in diamond, but also possess infrared fluorescence that is more favorable for transmission in optical fiber. However, these centers possess week fluorescence with broad spectrum, which prevents some key technologies from being put into practical application, such as quantum key distribution, photon-spin entanglement, spin-spin entanglement and quantum sensing. Therefore, optical resonator is very suitable for coupling centers to filter their spectrum and enhance the fluorescence by Purcell effect. It is very advantageous to use the fiber end face as cavity mirrors, thereby the fiber can provide small cavity volume corresponding to a large enhancement in spin color centers, and collect the fluorescence in cavity simultaneously, which has no extra loss in comparison with other collection methods. In this work, the properties and performance of fiber Fabry-Perot cavity coupling silicon carbide membrane are mainly studied through theoretical calculation. Firstly, some parameters are optimized such as membrane roughness and mirror reflection by calculating the mode of the fiber cavity and enhancing the color centers coupling into the cavity, then analyzing the properties of different modes in cavity, the enhancement effect on cavity coupling color centers, and other relevant factors affecting the cavity coupling color centers. Next, the influences of dominated factor and vibration on the properties of the cavity, the enhancement and outcoupling of centers coupled into the cavity are investigated, and finally the optimal outcoupling efficiency corresponding to different vibration intensities is obtained. These results give direct guidance for the further experimental design and direction for optimization of the fiber cavity coupling color centers.
      Corresponding author: Xu Jin-Shi, jsxu@ustc.edu.cn ; Li Chuan-Feng, cfli@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302700), the National Natural Science Foundation of China (Grants Nos. 61725504, U19A2075, 61905233, 11774335, 11821404, 11975221), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDRW-XH-2019-1), the Anhui Frontier Program in Quantum Information Technologies, China (Grant Nos. AHY060300, AHY020100), the Fundamental Research Funds for the Central Universities, China (Grants Nos. WK2030380017, WK2470000026), and the China Postdoctoral Science Foundation (Grant Nos. BX20200326, 2021M693099).
    [1]

    Smeltzer B, Childress L, Gali A 2011 New J. Phys. 13 025021Google Scholar

    [2]

    Dréau A, Maze J R, Lesik M, Roch J F, Jacques V 2012 Phys. Rev. B 85 134107Google Scholar

    [3]

    Bernien H, Childress L, Robledo L, Markham M, Twitchen D, Hanson R 2012 Phys. Rev. Lett. 108 043604Google Scholar

    [4]

    Sipahigil A, Jahnke K D, Rogers L J, et al. 2014 Phys. Rev. Lett. 113 113602Google Scholar

    [5]

    Togan E, Chu Y, Trifonov A S, et al. 2010 Nature 466 730Google Scholar

    [6]

    Bernien H, Hensen B, Pfaff W, et al. 2013 Nature 497 86Google Scholar

    [7]

    Hensen B, Bernien H, Dreau A E, et al. 2015 Nature 526 682Google Scholar

    [8]

    Purcell E M 1995 Confined Electrons and Photons (Berlin: Springer) pp839–839

    [9]

    Barbour R J, Dalgarno P A, Curran A, et al. 2011 J. Appl. Phys. 110 053107Google Scholar

    [10]

    Albrecht R, Bommer A, Deutsch C, Reichel J, Becher C 2013 Phys. Rev. Lett. 110 243602Google Scholar

    [11]

    Benedikter J, Kaupp H, Hümmer T, et al. 2017 Phys. Rev. A 7 024031Google Scholar

    [12]

    Greuter L, Starosielec S, Najer D, et al. 2014 Appl. Phys. Lett. 105 121105Google Scholar

    [13]

    Dutta H S, Goyal A K, Srivastava V, Pal S 2016 Photonics Nanostruct. Fundam. Appl. 20 41Google Scholar

    [14]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74Google Scholar

    [15]

    Johnson S, Dolan P R, Grange T, Trichet A A P, Hornecker G, Chen Y C, Weng L, Hughes G M, Watt A A R, Auffèves A, Smith J M 2015 New J. Phys. 17 122003Google Scholar

    [16]

    Høy Jensen R, Janitz E, Fontana Y, et al. 2020 Phys. Rev. A 13 064016Google Scholar

    [17]

    Riedel D, Söllner I, Shields B J, Starosielec S, Appel P, Neu E, Maletinsky P, Warburton R J 2017 Phys. Rev. X 7 031040

    [18]

    Koehl W F, Buckley B B, Heremans F J, Calusine G, Awschalom D D 2011 Nature 479 84Google Scholar

    [19]

    Falk A L, Buckley B B, Calusine G, Koehl W F, Dobrovitski V V, Politi A, Zorman C A, Feng P X L, Awschalom D D 2013 Nat. Commun. 4 1819Google Scholar

    [20]

    Christle D J, Falk A L, Andrich P, Klimov P V, Ul Hassan J, Son N T, Janzen E, Ohshima T, Awschalom D D 2015 Nat. Mater. 14 160Google Scholar

    [21]

    Ivády V, Davidsson J, Delegan N, Falk A L, Klimov P V, Whiteley S J, Hruszkewycz S O, Holt M V, Heremans F J, Son N T 2019 Nat. Commun. 10 1Google Scholar

    [22]

    Li Q, Wang J F, Yan F F, et al. 2021 Natl. Sci. Rev. DOI: 10.1093/nsr/nwab122

    [23]

    Zhou J Y, Li Q, Hao Z Y, Yan F F, Yang M, Wang J F, Lin W X, Liu Z H, Liu W, Li H, You L X, Xu J S, Li C F, Guo G C 2021 ACS Photonics 8 2384Google Scholar

    [24]

    Gali A 2011 Phys. Status Solidi B 248 1337Google Scholar

    [25]

    Son N, Carlsson P, Ul Hassan J, et al. 2006 Phys. Rev. Lett. 96 055501Google Scholar

    [26]

    Gali Á 2019 Nanophotonics 8 1907Google Scholar

    [27]

    Christle D J, Klimov P V, Charles F, Szász K, Ivády V, Jokubavicius V, Hassan J U, Syväjärvi M, Koehl W F, Ohshima T 2017 Phys. Rev. X 7 021046

    [28]

    Manson N, Harrison J, Sellars M 2006 Phys. Rev. B 74 104303Google Scholar

    [29]

    Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, Von Borczyskowski C 1997 Science 276 2012Google Scholar

    [30]

    Xu J S, Li C F, Guo G C 2021 Fundamental Research 1 220Google Scholar

    [31]

    Kaupp H, Deutsch C, Chang H C, Reichel J, Hänsch T W, Hunger D 2013 Phys. Rev. A 88 053812

    [32]

    Janitz E, Ruf M, Dimock M, Bourassa A, Sankey J, Childress L 2015 Phys. Rev. A 92 043844Google Scholar

    [33]

    Kaupp H, Hümmer T, Mader M, et al. 2016 Phys. Rev. A 6 054010Google Scholar

    [34]

    Bogdanović S, van Dam S B, Bonato C, Coenen L C, Zwerver A M J, Hensen B, Liddy M S Z, Fink T, Reiserer A, Lončar M, Hanson R 2017 Appl. Phys. Lett. 110 171103Google Scholar

    [35]

    Häußler S, Benedikter J, Bray K, Regan B, Dietrich A, Twamley J, Aharonovich I, Hunger D, Kubanek A 2019 Phys. Rev. B 99 165310Google Scholar

    [36]

    Ruf M, Weaver M J, van Dam S B, Hanson R 2021 Phys. Rev. A 15 024049Google Scholar

    [37]

    Li Q, Wang J F, Yan F F, et al. 2019 Nanoscale 11 20554Google Scholar

    [38]

    van Dam S B, Ruf M, Hanson R 2018 New J. Phys. 20 115004Google Scholar

    [39]

    Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W, Reichel J 2010 New J. Phys. 12 065038Google Scholar

    [40]

    Hill P, Gu E, Dawson M D, Strain M J 2018 Diamond Relat. Mater. 88 215Google Scholar

    [41]

    Faraon A, Barclay P E, Santori C, Fu K-M C, Beausoleil R G 2011 Nat. Photonics 5 301Google Scholar

    [42]

    Li L, Schröder T, Chen E H, Walsh M, Bayn I, Goldstein J, Gaathon O, Trusheim M E, Lu M, Mower J 2015 Nat. Commun. 6 6173

    [43]

    Ruf M, M I J, van Dam S, de Jong N, van den Berg H, Evers G, Hanson R 2019 Nano Lett. 19 3987Google Scholar

    [44]

    Heupel J, Pallmann M, Korber J, Merz R, Kopnarski M, Stohr R, Reithmaier J P, Hunger D, Popov C 2020 Micromachines (Basel) 11 1080Google Scholar

    [45]

    Gallego Fernández J C 2018 Ph. D. Dissertation (North Rhine: Rheinische Friedrich-Wilhelms-Universität Bonn)

  • 图 1  光纤腔示意图以及腔内模场谱图和分布图 (a) 耦合薄膜的光纤腔示意图; (b) 腔内基模频率随腔长的变化关系, 其中薄膜厚度tm为4.12 μm; (c) 处于“空气模”时腔内场强的分布情况, 其中薄膜厚度tm为4.29 μm; (d) 处于“薄膜模”时腔内场强的分布情况, 其中薄膜厚度tm为4.19 μm. 图(c)和图(d)左上角的小图是界面场强的放大图

    Figure 1.  FFPC sketch, spectrum and field intensity of cavity, top left insets of (c) and (d) are the enlarged field on the surface: (a) Sketch of FFPC coupling membrane; (b) spectrum of the fundamental mode varying with cavity length, where tm is 4.12 μm; (c) field intensity of the “air-mode” in cavity, where tm is 4.29 μm; (d) field intensity of the “membrane-mode” in cavity, where tm is 4.19 μm.

    图 2  β因子随薄膜厚度$ {t}_{\rm{m}} $变化, 不同曲线表示不同的表面粗糙度$ {\sigma }_{\rm{MA}} $, 虚线与所有曲线相交的点表示在该薄膜厚度$ {t}_{\rm{m}} $下腔处于“薄膜模” (a) 高精细度腔的β因子, 其中取$ {{\cal{L}}}_{{\rm{M}}, {\rm{a}}} $为0.025 × 10-3, $ {{\cal{L}}}_{{\rm{M}}, {\rm{m}}} $为0.03 × 10–3; (b) 低精细度腔的β因子, 其中$ {{\cal{L}}}_{{\rm{M}}, {\rm{a}}} $$ {{\cal{L}}}_{{\rm{M}}, {\rm{m}}} $均为4.5 × 10–3

    Figure 2.  β factor varying with the width and roughness of the membrane. The points of intersection between the curves and dotted line indicate that the cavity is in the membrane mode: (a) β factor of high fineness cavity with $ {{\cal{L}}}_{{\rm{M}}, {\rm{a}}} $ of 0.025 × 10-3 and $ {{\cal{L}}}_{{\rm{M}}, {\rm{m}}} $ of 0.03 × 10–3; (b) β factor of low fineness cavity with $ {{\cal{L}}}_{{\rm{M}}, {\rm{a}}} $ of 4.5 × 10–3 and $ {{\cal{L}}}_{{\rm{M}}, {\rm{m}}} $ of 4.5 × 10–3.

    图 3  存在振动时的$ {\beta }_{\rm{vib}} $因子, 其中选取了四个振动标准差0.01, 0.03, 0.07和0.2 nm进行计算 (a) 腔内为“薄膜模”时的$ {\beta }_{\rm{vib}} $因子, 与不存在振动的情况相比, 可见振动对高精细度腔的影响十分明显; (b) 腔内为“空气模”时的$ {\beta }_{\rm{vib}} $因子. 与“薄膜模”相比, 振动对“空气模”的影响更大, 尤其是在$ {{\cal{L}}}_{\rm{eff}} $较小, 即高精细度的情况下

    Figure 3.  $ {\beta }_{\rm{vib}} $ factor varying with vibration, where the four cases with the vibration standard deviation of 0.01, 0.03, 0.07 and 0.2 nm are calculated: (a) $ {\beta }_{\rm{vib}} $ factor when the cavity is on the “membrane-mode”. It’s clear that vibration affects the factor a lot compared with the no vibration case; (b) $ {\beta }_{\rm{vib}} $ factor when the cavity is on the “air-mode”. Vibration affects the factor more than that on the “membrane-mode”, especially when $ {{\cal{L}}}_{\rm{eff}} $ is low, i.e., the finesse is high.

    图 4  考虑耦出效率时的$ {\beta }_{\rm{vib}} $因子, 其中选取了四个振动标准差0.01, 0.03, 0.07和0.2 nm进行计算, 可以看出存在极大值使耦出效率$ {\beta }_{\rm{vib}} $最佳; 将该极大值提取出来, 可以得到该值与振动标准差$ {\sigma }_{\rm{vib}} $的关系, 并得到此时对应的耦出透射率$ {T}_{0} $ (a) 腔内为“薄膜模”时的$ {\beta }_{\rm{vib}} $因子; (b) 腔内为“空气模”时的$ {\beta }_{\rm{vib}} $因子; (c) 腔内为“薄膜模”时的最佳耦出效率$ {\beta }_{\rm{vib}} $以及对应的耦出透射率$ {T}_{0} $与振动$ {\sigma }_{\rm{vib}} $的关系; (d) 腔内为“空气模”时的最佳耦出效率$ {\beta }_{\rm{vib}} $以及对应的耦出透射率$ {T}_{0} $与振动$ {\sigma }_{\rm{vib}} $的关系

    Figure 4.  $ {\beta }_{\rm{vib}} $ factor varying with vibration including outcoupling efficiency, where the four cases with the vibration standard deviation of 0.01, 0.03, 0.07 and 0.2 nm are calculated. It’s clear that there exists a maximum value of the outcoupling efficiency, thereby extracting this maximum value and calculating the relation between the max outcoupling efficiency $ {\beta }_{\rm{vib}} $, the optimal outcoupling transmissivity $ {T}_{0} $ and vibration RMS $ {\sigma }_{\rm{vib}} $: (a) $ {\beta }_{\rm{vib}} $ factor when the cavity is on the “membrane-mode”; (b) $ {\beta }_{\rm{vib}} $ factor when the cavity is on the “air-mode”; (c) the relation between the max $ {\beta }_{\rm{vib}} $, the corresponding $ {T}_{0} $ and vibration RMS $ {\sigma }_{\rm{vib}} $ when the cavity is on the “membrane-mode”; (d) the relation between the max $ {\beta }_{\rm{vib}} $, the corresponding $ {T}_{0} $ and vibration RMS $ {\sigma }_{\rm{vib}} $ when the cavity is on the “air-mode”.

  • [1]

    Smeltzer B, Childress L, Gali A 2011 New J. Phys. 13 025021Google Scholar

    [2]

    Dréau A, Maze J R, Lesik M, Roch J F, Jacques V 2012 Phys. Rev. B 85 134107Google Scholar

    [3]

    Bernien H, Childress L, Robledo L, Markham M, Twitchen D, Hanson R 2012 Phys. Rev. Lett. 108 043604Google Scholar

    [4]

    Sipahigil A, Jahnke K D, Rogers L J, et al. 2014 Phys. Rev. Lett. 113 113602Google Scholar

    [5]

    Togan E, Chu Y, Trifonov A S, et al. 2010 Nature 466 730Google Scholar

    [6]

    Bernien H, Hensen B, Pfaff W, et al. 2013 Nature 497 86Google Scholar

    [7]

    Hensen B, Bernien H, Dreau A E, et al. 2015 Nature 526 682Google Scholar

    [8]

    Purcell E M 1995 Confined Electrons and Photons (Berlin: Springer) pp839–839

    [9]

    Barbour R J, Dalgarno P A, Curran A, et al. 2011 J. Appl. Phys. 110 053107Google Scholar

    [10]

    Albrecht R, Bommer A, Deutsch C, Reichel J, Becher C 2013 Phys. Rev. Lett. 110 243602Google Scholar

    [11]

    Benedikter J, Kaupp H, Hümmer T, et al. 2017 Phys. Rev. A 7 024031Google Scholar

    [12]

    Greuter L, Starosielec S, Najer D, et al. 2014 Appl. Phys. Lett. 105 121105Google Scholar

    [13]

    Dutta H S, Goyal A K, Srivastava V, Pal S 2016 Photonics Nanostruct. Fundam. Appl. 20 41Google Scholar

    [14]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74Google Scholar

    [15]

    Johnson S, Dolan P R, Grange T, Trichet A A P, Hornecker G, Chen Y C, Weng L, Hughes G M, Watt A A R, Auffèves A, Smith J M 2015 New J. Phys. 17 122003Google Scholar

    [16]

    Høy Jensen R, Janitz E, Fontana Y, et al. 2020 Phys. Rev. A 13 064016Google Scholar

    [17]

    Riedel D, Söllner I, Shields B J, Starosielec S, Appel P, Neu E, Maletinsky P, Warburton R J 2017 Phys. Rev. X 7 031040

    [18]

    Koehl W F, Buckley B B, Heremans F J, Calusine G, Awschalom D D 2011 Nature 479 84Google Scholar

    [19]

    Falk A L, Buckley B B, Calusine G, Koehl W F, Dobrovitski V V, Politi A, Zorman C A, Feng P X L, Awschalom D D 2013 Nat. Commun. 4 1819Google Scholar

    [20]

    Christle D J, Falk A L, Andrich P, Klimov P V, Ul Hassan J, Son N T, Janzen E, Ohshima T, Awschalom D D 2015 Nat. Mater. 14 160Google Scholar

    [21]

    Ivády V, Davidsson J, Delegan N, Falk A L, Klimov P V, Whiteley S J, Hruszkewycz S O, Holt M V, Heremans F J, Son N T 2019 Nat. Commun. 10 1Google Scholar

    [22]

    Li Q, Wang J F, Yan F F, et al. 2021 Natl. Sci. Rev. DOI: 10.1093/nsr/nwab122

    [23]

    Zhou J Y, Li Q, Hao Z Y, Yan F F, Yang M, Wang J F, Lin W X, Liu Z H, Liu W, Li H, You L X, Xu J S, Li C F, Guo G C 2021 ACS Photonics 8 2384Google Scholar

    [24]

    Gali A 2011 Phys. Status Solidi B 248 1337Google Scholar

    [25]

    Son N, Carlsson P, Ul Hassan J, et al. 2006 Phys. Rev. Lett. 96 055501Google Scholar

    [26]

    Gali Á 2019 Nanophotonics 8 1907Google Scholar

    [27]

    Christle D J, Klimov P V, Charles F, Szász K, Ivády V, Jokubavicius V, Hassan J U, Syväjärvi M, Koehl W F, Ohshima T 2017 Phys. Rev. X 7 021046

    [28]

    Manson N, Harrison J, Sellars M 2006 Phys. Rev. B 74 104303Google Scholar

    [29]

    Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, Von Borczyskowski C 1997 Science 276 2012Google Scholar

    [30]

    Xu J S, Li C F, Guo G C 2021 Fundamental Research 1 220Google Scholar

    [31]

    Kaupp H, Deutsch C, Chang H C, Reichel J, Hänsch T W, Hunger D 2013 Phys. Rev. A 88 053812

    [32]

    Janitz E, Ruf M, Dimock M, Bourassa A, Sankey J, Childress L 2015 Phys. Rev. A 92 043844Google Scholar

    [33]

    Kaupp H, Hümmer T, Mader M, et al. 2016 Phys. Rev. A 6 054010Google Scholar

    [34]

    Bogdanović S, van Dam S B, Bonato C, Coenen L C, Zwerver A M J, Hensen B, Liddy M S Z, Fink T, Reiserer A, Lončar M, Hanson R 2017 Appl. Phys. Lett. 110 171103Google Scholar

    [35]

    Häußler S, Benedikter J, Bray K, Regan B, Dietrich A, Twamley J, Aharonovich I, Hunger D, Kubanek A 2019 Phys. Rev. B 99 165310Google Scholar

    [36]

    Ruf M, Weaver M J, van Dam S B, Hanson R 2021 Phys. Rev. A 15 024049Google Scholar

    [37]

    Li Q, Wang J F, Yan F F, et al. 2019 Nanoscale 11 20554Google Scholar

    [38]

    van Dam S B, Ruf M, Hanson R 2018 New J. Phys. 20 115004Google Scholar

    [39]

    Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W, Reichel J 2010 New J. Phys. 12 065038Google Scholar

    [40]

    Hill P, Gu E, Dawson M D, Strain M J 2018 Diamond Relat. Mater. 88 215Google Scholar

    [41]

    Faraon A, Barclay P E, Santori C, Fu K-M C, Beausoleil R G 2011 Nat. Photonics 5 301Google Scholar

    [42]

    Li L, Schröder T, Chen E H, Walsh M, Bayn I, Goldstein J, Gaathon O, Trusheim M E, Lu M, Mower J 2015 Nat. Commun. 6 6173

    [43]

    Ruf M, M I J, van Dam S, de Jong N, van den Berg H, Evers G, Hanson R 2019 Nano Lett. 19 3987Google Scholar

    [44]

    Heupel J, Pallmann M, Korber J, Merz R, Kopnarski M, Stohr R, Reithmaier J P, Hunger D, Popov C 2020 Micromachines (Basel) 11 1080Google Scholar

    [45]

    Gallego Fernández J C 2018 Ph. D. Dissertation (North Rhine: Rheinische Friedrich-Wilhelms-Universität Bonn)

  • [1] Gao Rong, Yang Ya-Nan, Zhan Chen-Yi, Zhang Zong-Zhen, Deng Yi, Wang Zi-Xiao, Liang Kun, Feng Su-Chun. Design of optical frequency comb based on dual frequency pumped normal dispersion silicon carbide microresonator. Acta Physica Sinica, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] Wen Ya-Fei, Tian Jian-Feng, Wang Zhi-Qiang, Zhuang Yuan-Yuan. Fiber-cavity enhanced and high-fidelity optical memory in cold atom ensemble. Acta Physica Sinica, 2023, 72(6): 060301. doi: 10.7498/aps.72.20222178
    [3] Li Jia-Jin, Liu Qian, Wu Dan, Deng Xiao-Qing, Zhang Zhen-Hua, Fan Zhi-Qiang. Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules. Acta Physica Sinica, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [4] She Qing, Jiang Mei-Fu, Qian Nong, Pan Yue. Effects of preparation temperature of SiC intermediate layers on the hemocompatibility of SiC/F-DLC composite film. Acta Physica Sinica, 2014, 63(18): 185204. doi: 10.7498/aps.63.185204
    [5] Gao Shang-Peng, Zhu Tong. Quasiparticle band structure calculation for SiC using self-consistent GW method. Acta Physica Sinica, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [6] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [7] Qin Xi-Feng, Liang Yi, Wang Feng-Xiang, Li Shuang, Fu Gang, Ji Yan-Ju. Range and annealing behavior of Er ions implanted in SiC. Acta Physica Sinica, 2011, 60(6): 066101. doi: 10.7498/aps.60.066101
    [8] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [9] Zhang Hong-Hua, Zhang Chong-Hong, Li Bing-Sheng, Zhou Li-Hong, Yang Yi-Tao, Fu Yun-Chong. Optical properties revealing annealing behavior of high-temperature He-implantation induced defects in silicon carbide. Acta Physica Sinica, 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [10] Lin Tao, Chen Zhi-Ming, Li Jia, Li Lian-Bi, Li Qing-Min, Pu Hong-Bin. Study of the growth characteristics of SiCGe layers grown on 6H-SiC substrates. Acta Physica Sinica, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [11] Yu Wei, He Jie, Sun Yun-Tao, Zhu Hai-Feng, Han Li, Fu Guang-Sheng. Pulse laser crystallization of silicon carbon thin films. Acta Physica Sinica, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [12] Li Yi-De, Du Ying-Lei, Lee Ki-Huan, Wu Bai-Mei. Photoacoustic determination of the energy band characterics for porous silicon carbides. Acta Physica Sinica, 2003, 52(5): 1260-1263. doi: 10.7498/aps.52.1260
    [13] Wang Jian-Ping, Hao Yue, Peng Jun, Zhu Zuo-Yun, Zhang Yong-Hua. . Acta Physica Sinica, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
    [14] Guo Chang-lin. CRYSTAL STRUCTURE OF SEVERAL SiC POLYTYPES BELONGING TO SPECIAL STRUCTURE FAMILY. Acta Physica Sinica, 1982, 31(10): 1369-1379. doi: 10.7498/aps.31.1369
    [15] FENG XI-QI, LUO BIN-ZHANG. THE CHARACTERISTICS OF EPITAXIAL p-n JUNCTIONS GROWN BY METHOD OF SILICON CARBIDE CRYSTALS SUBLIMATION. Acta Physica Sinica, 1980, 29(1): 1-10. doi: 10.7498/aps.29.1
    [16] YUI SHOU-DUNG, WOO DAU-WEI, TON FU-DI, TAM HOA-YEN. MINORITY CARRIER LIFETIME IN SILICON CARBIDE BY THE ELECTROLUMINESCENCE METHOD. Acta Physica Sinica, 1966, 22(9): 976-981. doi: 10.7498/aps.22.976
    [17] FUNG SI-CHI, LOG BIN-CHANG, TON FU-DI, CHANG YEN-SING, HONG FU-GUN, TAM HOA-YEN. MEASUREMENTS OF RESISTIVITY AND HALL EFFECT IN SILICON CARBIDE BY THE VAN DER PAUW METHOD. Acta Physica Sinica, 1966, 22(9): 967-975. doi: 10.7498/aps.22.967
    [18] . Acta Physica Sinica, 1966, 22(7): 831-835. doi: 10.7498/aps.22.831
    [19] KUO CHANG-LIN. THE POLYTYPISM OF SILICON CARBIDE. Acta Physica Sinica, 1965, 21(6): 1089-1104. doi: 10.7498/aps.21.1089
    [20] . Acta Physica Sinica, 1964, 20(3): 287-288. doi: 10.7498/aps.20.287
Metrics
  • Abstract views:  5243
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  27 September 2021
  • Accepted Date:  25 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 March 2022

/

返回文章
返回