Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal smart materials and their applications in space thermal control system

Cao Bing-Yang Zhang Zi-Tong

Citation:

Thermal smart materials and their applications in space thermal control system

Cao Bing-Yang, Zhang Zi-Tong
PDF
HTML
Get Citation
  • Effective thermal control technologies are increasingly demanded in various application scenarios like spacecraft systems. Thermal conductivities of materials play a key role in thermal control systems, and one of the basic requirements for the materials is their reversibly tunable thermal properties. In this paper, we briefly review the recent research progress of the thermal smart materials in the respects of fundamental physical mechanisms, thermal switching ratio, and application value. We focus on the following typical thermal smart materials: nanoparticle suspensions, phase change materials, soft materials, layered materials tuned by electrochemistry, and materials tuned by specific external field. After surveying the fundamental mechanisms of thermal smart devices, we present their applications in spacecraft and other fields. Finally, we discuss the difficulties and challenges in studying the thermal smart materials, and also point out an outlook on their future development.
      Corresponding author: Cao Bing-Yang, caoby@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51825601, U20A20301).
    [1]

    Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 41304Google Scholar

    [2]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [3]

    Zhu W, Deng Y, Wang Y, Shen S, Gulfam R 2016 Energy 100 91Google Scholar

    [4]

    侯增棋, 胡金刚 2007 航天器热控制技术 (第 2 版) (北京: 中国科学技术出版社) 第1−11页

    Hou Z Q, Hu J G 2007 Thermal Control Technology of Spacecraft (2nd Ed.) (Beijing: Science and technology of China press) pp1−11 (in Chinese)

    [5]

    Baughman R H 2002 Science 297 787Google Scholar

    [6]

    Geim A K 2009 Science 324 1530Google Scholar

    [7]

    Kleinstr­­­euer C, Feng Y 2011 Nanoscale Res. Lett. 6 229Google Scholar

    [8]

    Pil Jang S, Choi S U S 2007 J Heat Trans. 129 617Google Scholar

    [9]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [10]

    Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120Google Scholar

    [11]

    Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 034703Google Scholar

    [12]

    董若宇, 曹鹏, 曹桂兴, 胡帼 杰, 曹炳阳 2017 物理学报 66 014702Google Scholar

    [13]

    Zhang Z T, Dong R Y, Qiao D S, Cao B Y 2020 Nanotechnology 31 465403Google Scholar

    [14]

    Philip J, Shima P D, Raj B 2007 Appl. Phys. Lett. 91 203108Google Scholar

    [15]

    Philip J, Shima P D, Raj B 2008 Appl. Phys. Lett. 92 043108Google Scholar

    [16]

    Shima P D, Philip J, Raj B 2009 Appl. Phys. Lett. 95 133112Google Scholar

    [17]

    Sun P C, Huang Y, Zheng R T, Cheng G A, Wan Q M, Ding Y L 2015 Mater. Lett. 149 92Google Scholar

    [18]

    Sharma A, Shukla A, Chen C R, Wu T N 2014 Sustainable Energy Technol. Assess. 7 17Google Scholar

    [19]

    Berglund C N, Guggenheim H J 1969 Phys. Rev. 185 1022Google Scholar

    [20]

    Kizuka H, Yagi T, Jia J, Yamashita Y, Nakamura S, Taketoshi N, Shigesato Y 2015 Jpn. J. Appl. Phys. 54 053201Google Scholar

    [21]

    Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, Wu J 2017 Science 355 371Google Scholar

    [22]

    Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904Google Scholar

    [23]

    Reifenberg J P, Panzer M A, Kim S, Gibby A M, Zhang Y, Wong S, Wong H S P, Pop E, Goodson K E 2007 Appl. Phys. Lett. 91 111904Google Scholar

    [24]

    Yang L, Cao B Y 2021 J. Phys. D:Appl. Phys. 54 505302Google Scholar

    [25]

    Batdalov A B, Aliev A M, Khanov L N, Buchel’nikov v d, Sokolovskii V V, Koledov V V, Shavrov V G, Mashirov A V, Dil’mieva E T 2016 J. Exp. Theor. Phys. 122 874Google Scholar

    [26]

    Zheng Q, Zhu G, Diao Z, Banerjee D, Cahill D G 2019 Adv. Eng. Mater. 21 1801342Google Scholar

    [27]

    Zheng R, Gao J, Wang J, Chen G 2011 Nat. Commun. 2 550Google Scholar

    [28]

    Angayarkanni S A, Philip J 2014 J. Phys. Chem. C 118 13972Google Scholar

    [29]

    Angayarkanni S A, Philip J 2015 J. Appl. Phys. 118 094306Google Scholar

    [30]

    Harish S, Ishikawa K, Chiashi S, Shiomi J, Maruyama S 2013 J. Phys. Chem. C 117 15409Google Scholar

    [31]

    Sun P C, Wu Y L, Gao J W, Cheng G A, Chen G, Zheng R T 2013 Adv. Mater. 25 4938Google Scholar

    [32]

    Warzoha R J, Weigand R M, Fleischer A S 2015 Appl. Energy 137 716Google Scholar

    [33]

    Wu Y, Yan X, Meng P, Sun P, Cheng G, Zheng R 2015 Carbon 94 417Google Scholar

    [34]

    Issi J P, Heremans J, Dresselhaus M S 1983 Phys. Rev. B 27 1333Google Scholar

    [35]

    Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D, Cahill D G 2016 Nat. Commun. 7 13211Google Scholar

    [36]

    Qian X, Gu X, Dresselhaus M S, Yang R 2016 J. Phys. Chem. Lett. 7 4744Google Scholar

    [37]

    Sood A, Xiong F, Chen S, Wang H, Selli D, Zhang J, McClellan C J, Sun J, Donadio D, Cui Y, Pop E, Goodson K E 2018 Nat. Commun. 9 1267Google Scholar

    [38]

    Cho J, Losego M D, Zhang H G, Kim H, Zuo J, Petrov I, Cahill D G, Braun P V 2014 Nat. Commun. 5 4035Google Scholar

    [39]

    Kang J S, Ke M, Hu Y 2017 Nano Lett. 17 1431Google Scholar

    [40]

    Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G, Yildiz B 2020 Nat. Mater. 19 655Google Scholar

    [41]

    Barnes H A 2000 Chem. Eng. J. 79 84Google Scholar

    [42]

    Hu H Q, Gopinadhan M, Osuji C O 2014 Soft Matter 10 3867Google Scholar

    [43]

    Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V, Cahill D G 2019 Proc. Natl. Acad. Sci. 116 5973Google Scholar

    [44]

    Li C, Ma Y, Tian Z 2018 ACS Macro Lett. 7 53Google Scholar

    [45]

    Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar

    [46]

    Zhang T, Luo T 2013 ACS Nano 7 7592Google Scholar

    [47]

    Shin J, Kang M, Tsai T, Leal C, Braun P V, Cahill D G 2016 ACS Macro Lett. 5 955Google Scholar

    [48]

    Tomko J A, Pena-Francesch A, Jung H, Tyagi M, Allen B D, Demirel M C, Hopkins P E 2018 Nat. Nanotechnol. 13 959Google Scholar

    [49]

    Feng H, Tang N, An M, Guo R L, Ma D K, Yu X X, Zang J F, Yang N 2019 J. Phys. Chem. C. 123 31003Google Scholar

    [50]

    Hopkins P E, Adamo C, Ye L H, Huey B D, Lee S R, Schlom D G, Ihlefeld J F 2013 Appl. Phys. Lett. 102 121903Google Scholar

    [51]

    Ihlefeld J F, Foley B M, Scrymgeour D A, Michael J R, McKenzie B B, Medlin D L, Wallace M, Trolier-McKinstry S, Hopkins P E 2015 Nano Lett. 15 1791Google Scholar

    [52]

    Chynoweth A G 1956 J. Appl. Phys. 27 78Google Scholar

    [53]

    Kalaidjiev K N, Mikhailov M P, Bozhanov G I, St. Stoyanov R 1982 Phys. Status Solidi A 69 K163Google Scholar

    [54]

    Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N 2021 Nano Energy 82 105749

    [55]

    Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A 9 24472Google Scholar

    [56]

    Ziman J M 1960 Electrons and Phonons (Britain: Oxford University Press) pp483−523

    [57]

    Yim W M, Amith A 1972 Solid-State Electron. 15 1141Google Scholar

    [58]

    Yang F Y 1999 Science 284 1335Google Scholar

    [59]

    Kimling J, Wilson R B, Rott K, Kimling J, Reiss G, Cahill D G 2015 Phys. Rev. B 91 144405Google Scholar

    [60]

    Ismail K, Nelson S F, Chu J O, Meyerson B S 1993 Appl. Phys. Lett. 63 660Google Scholar

    [61]

    Chu M, Sun Y K, Aghoram U, Thompson S E 2009 Annu. Rev. Mater. Res. 39 203Google Scholar

    [62]

    Vogelsang T, Hofmann K R 1993 Appl. Phys. Lett. 63 186Google Scholar

    [63]

    Li X, Maute K, Dunn M L, Yang R 2010 Phys. Rev. B 81 245318Google Scholar

    [64]

    Meng H, Ma D, Yu X, Zhang L, Sun Z, Yang N 2019 Int. J. Heat Mass Transf. 145 118719Google Scholar

    [65]

    Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transf. 180 121773Google Scholar

    [66]

    Wan X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transf. 180 121821Google Scholar

    [67]

    Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [68]

    Yu D, Liao Y, Song Y, Wang S, Wan H, Zeng Y, Yin T, Yang W, He Z 2020 Adv. Sci. 7 2000177Google Scholar

    [69]

    Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A, Ruan X 2021 Nat. Commun. 12 163Google Scholar

    [70]

    Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju Y S, Pei Q 2017 Science 357 1130Google Scholar

    [71]

    Smullin S J, Wang Y, Schwartz D E 2015 Appl. Phys. Lett. 107 093903Google Scholar

    [72]

    McKay I S, Wang E N 2013 Energy 57 632Google Scholar

    [73]

    Puga J B, Bordalo B D, Silva D J, Dias M M, Belo J H, Araújo J P, Oliveira J C R E, Pereira A M, Ventura J 2017 Nano Energy 31 278Google Scholar

    [74]

    Yang N, Ni X X, Jiang J W, Li B W 2012 Appl. Phys. Lett. 100 093107Google Scholar

    [75]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [76]

    Cao B Y, Qiao D S 2018 ZL201810298324.6

    [77]

    胡帼杰, 曹桂兴, 乔德山, 曹炳阳 2019 工程热物理学报 40 1380

    Hu G J, Cao G X, Qiao D S, Cao B Y 2019 J. Eng. Thermophys. 40 1380

  • 图 1  开关式及连续调节式热智能材料示意图

    Figure 1.  Skematic of switching and gradual thermal smart materials.

    图 2  不同热智能材料响应机理示意图 (a)纳米颗粒悬浮液; (b)相变材料; (c)层状材料; (d)软物质材料; (e)受电磁场调控的材料

    Figure 2.  Skematic of physical mechanisms of thermal smart materials: (a) Nanoparticle suspensions; (b) phase change materials; (c) layered materials; (d) soft materials; (e) materials tuned by electric and magnetic field.

  • [1]

    Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 41304Google Scholar

    [2]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [3]

    Zhu W, Deng Y, Wang Y, Shen S, Gulfam R 2016 Energy 100 91Google Scholar

    [4]

    侯增棋, 胡金刚 2007 航天器热控制技术 (第 2 版) (北京: 中国科学技术出版社) 第1−11页

    Hou Z Q, Hu J G 2007 Thermal Control Technology of Spacecraft (2nd Ed.) (Beijing: Science and technology of China press) pp1−11 (in Chinese)

    [5]

    Baughman R H 2002 Science 297 787Google Scholar

    [6]

    Geim A K 2009 Science 324 1530Google Scholar

    [7]

    Kleinstr­­­euer C, Feng Y 2011 Nanoscale Res. Lett. 6 229Google Scholar

    [8]

    Pil Jang S, Choi S U S 2007 J Heat Trans. 129 617Google Scholar

    [9]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [10]

    Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120Google Scholar

    [11]

    Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 034703Google Scholar

    [12]

    董若宇, 曹鹏, 曹桂兴, 胡帼 杰, 曹炳阳 2017 物理学报 66 014702Google Scholar

    [13]

    Zhang Z T, Dong R Y, Qiao D S, Cao B Y 2020 Nanotechnology 31 465403Google Scholar

    [14]

    Philip J, Shima P D, Raj B 2007 Appl. Phys. Lett. 91 203108Google Scholar

    [15]

    Philip J, Shima P D, Raj B 2008 Appl. Phys. Lett. 92 043108Google Scholar

    [16]

    Shima P D, Philip J, Raj B 2009 Appl. Phys. Lett. 95 133112Google Scholar

    [17]

    Sun P C, Huang Y, Zheng R T, Cheng G A, Wan Q M, Ding Y L 2015 Mater. Lett. 149 92Google Scholar

    [18]

    Sharma A, Shukla A, Chen C R, Wu T N 2014 Sustainable Energy Technol. Assess. 7 17Google Scholar

    [19]

    Berglund C N, Guggenheim H J 1969 Phys. Rev. 185 1022Google Scholar

    [20]

    Kizuka H, Yagi T, Jia J, Yamashita Y, Nakamura S, Taketoshi N, Shigesato Y 2015 Jpn. J. Appl. Phys. 54 053201Google Scholar

    [21]

    Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, Wu J 2017 Science 355 371Google Scholar

    [22]

    Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904Google Scholar

    [23]

    Reifenberg J P, Panzer M A, Kim S, Gibby A M, Zhang Y, Wong S, Wong H S P, Pop E, Goodson K E 2007 Appl. Phys. Lett. 91 111904Google Scholar

    [24]

    Yang L, Cao B Y 2021 J. Phys. D:Appl. Phys. 54 505302Google Scholar

    [25]

    Batdalov A B, Aliev A M, Khanov L N, Buchel’nikov v d, Sokolovskii V V, Koledov V V, Shavrov V G, Mashirov A V, Dil’mieva E T 2016 J. Exp. Theor. Phys. 122 874Google Scholar

    [26]

    Zheng Q, Zhu G, Diao Z, Banerjee D, Cahill D G 2019 Adv. Eng. Mater. 21 1801342Google Scholar

    [27]

    Zheng R, Gao J, Wang J, Chen G 2011 Nat. Commun. 2 550Google Scholar

    [28]

    Angayarkanni S A, Philip J 2014 J. Phys. Chem. C 118 13972Google Scholar

    [29]

    Angayarkanni S A, Philip J 2015 J. Appl. Phys. 118 094306Google Scholar

    [30]

    Harish S, Ishikawa K, Chiashi S, Shiomi J, Maruyama S 2013 J. Phys. Chem. C 117 15409Google Scholar

    [31]

    Sun P C, Wu Y L, Gao J W, Cheng G A, Chen G, Zheng R T 2013 Adv. Mater. 25 4938Google Scholar

    [32]

    Warzoha R J, Weigand R M, Fleischer A S 2015 Appl. Energy 137 716Google Scholar

    [33]

    Wu Y, Yan X, Meng P, Sun P, Cheng G, Zheng R 2015 Carbon 94 417Google Scholar

    [34]

    Issi J P, Heremans J, Dresselhaus M S 1983 Phys. Rev. B 27 1333Google Scholar

    [35]

    Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D, Cahill D G 2016 Nat. Commun. 7 13211Google Scholar

    [36]

    Qian X, Gu X, Dresselhaus M S, Yang R 2016 J. Phys. Chem. Lett. 7 4744Google Scholar

    [37]

    Sood A, Xiong F, Chen S, Wang H, Selli D, Zhang J, McClellan C J, Sun J, Donadio D, Cui Y, Pop E, Goodson K E 2018 Nat. Commun. 9 1267Google Scholar

    [38]

    Cho J, Losego M D, Zhang H G, Kim H, Zuo J, Petrov I, Cahill D G, Braun P V 2014 Nat. Commun. 5 4035Google Scholar

    [39]

    Kang J S, Ke M, Hu Y 2017 Nano Lett. 17 1431Google Scholar

    [40]

    Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G, Yildiz B 2020 Nat. Mater. 19 655Google Scholar

    [41]

    Barnes H A 2000 Chem. Eng. J. 79 84Google Scholar

    [42]

    Hu H Q, Gopinadhan M, Osuji C O 2014 Soft Matter 10 3867Google Scholar

    [43]

    Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V, Cahill D G 2019 Proc. Natl. Acad. Sci. 116 5973Google Scholar

    [44]

    Li C, Ma Y, Tian Z 2018 ACS Macro Lett. 7 53Google Scholar

    [45]

    Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar

    [46]

    Zhang T, Luo T 2013 ACS Nano 7 7592Google Scholar

    [47]

    Shin J, Kang M, Tsai T, Leal C, Braun P V, Cahill D G 2016 ACS Macro Lett. 5 955Google Scholar

    [48]

    Tomko J A, Pena-Francesch A, Jung H, Tyagi M, Allen B D, Demirel M C, Hopkins P E 2018 Nat. Nanotechnol. 13 959Google Scholar

    [49]

    Feng H, Tang N, An M, Guo R L, Ma D K, Yu X X, Zang J F, Yang N 2019 J. Phys. Chem. C. 123 31003Google Scholar

    [50]

    Hopkins P E, Adamo C, Ye L H, Huey B D, Lee S R, Schlom D G, Ihlefeld J F 2013 Appl. Phys. Lett. 102 121903Google Scholar

    [51]

    Ihlefeld J F, Foley B M, Scrymgeour D A, Michael J R, McKenzie B B, Medlin D L, Wallace M, Trolier-McKinstry S, Hopkins P E 2015 Nano Lett. 15 1791Google Scholar

    [52]

    Chynoweth A G 1956 J. Appl. Phys. 27 78Google Scholar

    [53]

    Kalaidjiev K N, Mikhailov M P, Bozhanov G I, St. Stoyanov R 1982 Phys. Status Solidi A 69 K163Google Scholar

    [54]

    Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N 2021 Nano Energy 82 105749

    [55]

    Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A 9 24472Google Scholar

    [56]

    Ziman J M 1960 Electrons and Phonons (Britain: Oxford University Press) pp483−523

    [57]

    Yim W M, Amith A 1972 Solid-State Electron. 15 1141Google Scholar

    [58]

    Yang F Y 1999 Science 284 1335Google Scholar

    [59]

    Kimling J, Wilson R B, Rott K, Kimling J, Reiss G, Cahill D G 2015 Phys. Rev. B 91 144405Google Scholar

    [60]

    Ismail K, Nelson S F, Chu J O, Meyerson B S 1993 Appl. Phys. Lett. 63 660Google Scholar

    [61]

    Chu M, Sun Y K, Aghoram U, Thompson S E 2009 Annu. Rev. Mater. Res. 39 203Google Scholar

    [62]

    Vogelsang T, Hofmann K R 1993 Appl. Phys. Lett. 63 186Google Scholar

    [63]

    Li X, Maute K, Dunn M L, Yang R 2010 Phys. Rev. B 81 245318Google Scholar

    [64]

    Meng H, Ma D, Yu X, Zhang L, Sun Z, Yang N 2019 Int. J. Heat Mass Transf. 145 118719Google Scholar

    [65]

    Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transf. 180 121773Google Scholar

    [66]

    Wan X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transf. 180 121821Google Scholar

    [67]

    Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [68]

    Yu D, Liao Y, Song Y, Wang S, Wan H, Zeng Y, Yin T, Yang W, He Z 2020 Adv. Sci. 7 2000177Google Scholar

    [69]

    Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A, Ruan X 2021 Nat. Commun. 12 163Google Scholar

    [70]

    Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju Y S, Pei Q 2017 Science 357 1130Google Scholar

    [71]

    Smullin S J, Wang Y, Schwartz D E 2015 Appl. Phys. Lett. 107 093903Google Scholar

    [72]

    McKay I S, Wang E N 2013 Energy 57 632Google Scholar

    [73]

    Puga J B, Bordalo B D, Silva D J, Dias M M, Belo J H, Araújo J P, Oliveira J C R E, Pereira A M, Ventura J 2017 Nano Energy 31 278Google Scholar

    [74]

    Yang N, Ni X X, Jiang J W, Li B W 2012 Appl. Phys. Lett. 100 093107Google Scholar

    [75]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [76]

    Cao B Y, Qiao D S 2018 ZL201810298324.6

    [77]

    胡帼杰, 曹桂兴, 乔德山, 曹炳阳 2019 工程热物理学报 40 1380

    Hu G J, Cao G X, Qiao D S, Cao B Y 2019 J. Eng. Thermophys. 40 1380

  • [1] Xu Hao-Zhe, Xu Xiang-Fan. Thermal percolation network in Al2O3 based thermal conductive polymer. Acta Physica Sinica, 2023, 72(2): 024401. doi: 10.7498/aps.72.20221400
    [2] Li Yao-Long, Li Zhe, Li Song-Yuan, Zhang Ren-Liang. Regulation of thermal conductivity of bilayer graphene nanoribbon through interlayer covalent bond and tensile strain. Acta Physica Sinica, 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [3] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] An Meng, Sun Xu-Hui, Chen Dong-Sheng, Yang Nuo. Research progress of thermal transport in graphene-based thermal interfacial composite materials. Acta Physica Sinica, 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [5] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [6] Shao Chun-Rui, Li Hai-Yang, Wang Jun, Xia Guo-Dong. Thermal rectification enhancement based on porous structure in bulk materials. Acta Physica Sinica, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [7] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [8] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [9] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [10] Zhang Fei-Peng, Duan Kun-Jie, Zeng Hong, Zhang Jiu-Xing. Effect of double substitution of Ba and Ag on thermal transport of Ca3Co4O9-based thermoelectric oxide. Acta Physica Sinica, 2013, 62(18): 187201. doi: 10.7498/aps.62.187201
    [11] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [12] Li Wei, Feng Yan-Hui, Tang Jin-Jin, Zhang Xin-Xin. Thermal conductivity and thermal rectification of carbon nanotube Y junctions. Acta Physica Sinica, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [13] Wu Jun-Bo, Tang Xin-Gui, Jia Zhen-Hua, Chen Dong-Ge, Jiang Yan-Ping, Liu Qiu-Xiang. Influences of Y- and La-dopant on the thermal conductive properties and dielectric relaxation of Al2O3-based ceramics. Acta Physica Sinica, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [14] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Wei, Yang Mu, Li Jing, Wang Ge. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15. Acta Physica Sinica, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [15] Liu Cheng-Cheng, Cao Quan-Xi. First-principles study of the thermal transport property of Y3Al5O12. Acta Physica Sinica, 2010, 59(4): 2697-2702. doi: 10.7498/aps.59.2697
    [16] Wang Jian-Li, Xiong Guo-Ping, Gu Ming, Zhang Xing, Liang Ji. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite. Acta Physica Sinica, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [17] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [18] Gao Hui-Ping, Li Bo, Yu Yong, Ruan Ke-Qing, Wu Bai-Mei. Anomalous thermal conductivity in Nd_1.67Sr0.33NiO_4. Acta Physica Sinica, 2004, 53(11): 3853-3857. doi: 10.7498/aps.53.3853
    [19] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Fan Rong, Chen Xian-Hui, Cao Lie-Zhao. Thermal conductivity of two-energy-gap superconductor MgB2. Acta Physica Sinica, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [20] Wu Bai-Mei, Li Bo, Yang Dong-Sheng, Zheng Wei-Hua, Li Shi-Yan, Cao Lie-Zhao, Chen Xian-Hui. The thermal/electronic transport properties of new superconductor MgB2 and MgCNi3. Acta Physica Sinica, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
Metrics
  • Abstract views:  9462
  • PDF Downloads:  498
  • Cited By: 0
Publishing process
  • Received Date:  11 October 2021
  • Accepted Date:  29 November 2021
  • Available Online:  24 December 2021
  • Published Online:  05 January 2022

/

返回文章
返回