Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Artificially intelligent control of drag reduction around a circular cylinder based on wall pressure feedback

Chen Jiang-Li Chen Shao-Qiang Ren Feng Hu Hai-Bao

Citation:

Artificially intelligent control of drag reduction around a circular cylinder based on wall pressure feedback

Chen Jiang-Li, Chen Shao-Qiang, Ren Feng, Hu Hai-Bao
PDF
HTML
Get Citation
  • Focusing on the typical problem of flow around a circular cylinder, we propose an active flow control method of reducing drag of a circular cylinder, in which a deep reinforcement learning (DRL) method is used to establish the closed-loop control strategy with pressure sensors providing feedback signals. The detailed comparisons of the lift, drag, and flow fields with and without control are conducted. In the control system, pressure sensors evenly distributed on the cylinder surface are used to provide feedback signals for the controller. The multilayer perceptron is adopted to establish the mapping relationship between the sensors and the blowing/suction jets, i.e. the control strategy. A pair of continuously adjustable synthetic jets that exert transverse force mainly on the top and bottom edge of the cylinder is implemented. Based on the state-of-the-art proximal policy optimization algorithm, the control strategy is explored and optimized during a large number of learning episodes, thus achieving an effective, efficient, and robust drag reduction strategy. To build up the high-fidelity numerical environment, we adopt the lattice Boltzmann method as a core solver, which, together with the DRL agent, establishes an interactive framework. Furthermore, the surface pressure signals are extracted during the unsteady simulation to adjust the real-time blowing/suction jets intensity. The lift information and the drag information are recorded to evaluate the performance of the current control strategy. Results show that the active control strategy learnt by the DRL agent can reduce the drag by about 4.2% and the lift amplitude by about 49% at Reynolds number 100. A strong correlation between the drag reduction effect of the cylinder and the elongated recirculation bubble is noted. In addition, the drag reduction rate varies over a range of Reynolds numbers. The active control strategy is able to reduce the drag by 17.3% and 31.6% at Reynolds number 200 and 400, respectively. Owing to the fact that wall pressure signals are easy to measure in realistic scenarios, this study provides valuable reference for experimentally designing the active flow control of a circular cylinder based on wall pressure signals and intelligent control in more complicated flow environments.
      Corresponding author: Ren Feng, renfeng@nwpu.edu.cn ; Hu Hai-Bao, huhaibao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071272, 12102357), the Basic Frontier Project, China (Grant No. JCKY2018*18), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102021HHZY030002), the Natural Science Basic Research Program of Shanxi, China (Grant No. 2020JC-18), the Open Fund of Henan Key Laboratory of Underwater Intelligent Equipment, China (Grant No. KL01B2101), and the Science and Technology Projects for Innovation Ecosystem Construction by the National Supercomputing Center in Zhengzhou, China (Grant No. 201400211100).
    [1]

    任峰, 高传强, 唐辉 2021 航空学报 42 524686Google Scholar

    Ren F, Gao C Q, Tang H 2021 Acta Aeronaut. Astronaut. Sin 42 524686Google Scholar

    [2]

    Brunton S L, Noack B R 2015 Appl. Mech. Rev. 67 050801Google Scholar

    [3]

    Li R, Noack B R, Cordier L, Borée J 2017 Exp. Fluids 58 1Google Scholar

    [4]

    Schoppa W, Hussain F 1998 Phys. Fluids 10 1049Google Scholar

    [5]

    Duriez T, Brunton S L, Noack B R 2017 Machine learning control-taming nonlinear dynamics and turbulence (Cham, Switzerland: Springer International Publishing) pp1–229

    [6]

    Ren F, Hu H B, Tang H 2020 J. Hydrodyn. 32 247Google Scholar

    [7]

    Rabault J, Kuchta M, Jensen A, Réglade U, Cerardi N 2019 J. Fluid Mech. 865 281Google Scholar

    [8]

    Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O 2017 arXiv: 1707.06347

    [9]

    Paris R, Beneddine S, Dandois J 2021 J. Fluid Mech. 913 A25Google Scholar

    [10]

    Ren F, Rabault J, Tang H 2021 Phys. Fluids 33 037121Google Scholar

    [11]

    Ren F, Song B, Zhang Y, Hu H 2018 Comput. Fluids. 173 29Google Scholar

    [12]

    Rabault J, Kuhnle A 2019 Phys. Fluids 31 094105Google Scholar

    [13]

    郭照立 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第9—14页

    Guo Z L, Zhen C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp 9–14 (In Chinese)

    [14]

    何雅玲, 王勇, 李庆 2009 格子 Boltzmann 方法的理论及应用 (北京: 科学出版社) 第5—79页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Application (Beijing: Science Press) pp5–79 (In Chinese)

    [15]

    Qian Y H, D'Humières D, Lallemand P 1992 Europhys. Lett 17 479Google Scholar

    [16]

    D'Humières D 1992 AIAA J. 159 450

    [17]

    D'Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. Roy. Soc. A 360 437Google Scholar

    [18]

    He X, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [19]

    Guo Z L, Zhen C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [20]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [21]

    Yu D, Mei R, Luo L S, Shyy W 2003 Prog. Aeosp. Sci 39 329Google Scholar

    [22]

    Chen Y, Cai Q, Xia Z, Wang M, Chen S 2013 Phys. Rev. E 88 013303Google Scholar

    [23]

    Tang H, Rabault J, Kuhnle A, Kuhnle A, Wang Y, Wang T 2020 Phys. Fluids 32 053605Google Scholar

    [24]

    Schäfer M, Turek S, Durst F, Krause E 1997 Flow Simulation with High-Performance Computers II (Wiesbaden: Vieweg+Teubner Verlag) pp547–566

    [25]

    Van Hasselt H, Guez A, Silver D 2016 Proceedings of the AAAI conference on artificial intelligence Phoenix, Germany, February 12–17, 2016 p2094

    [26]

    Tiwari A, Vanka S P 2012 Int. J. Numer. Methods Fluids 69 481Google Scholar

    [27]

    Protas B, Wesfreid J 2002 Phys. Fluids 14 810Google Scholar

    [28]

    Bergmann M, Cordier L, Brancher J P 2005 Phys. Fluids 17 097101Google Scholar

    [29]

    Coutanceau M, Bouard R 1977 J. Fluid Mech. 79 231Google Scholar

  • 图 1  物理模型示意图

    Figure 1.  Schematics of the physical model.

    图 2  智能体训练过程(速度反馈)

    Figure 2.  Learning curves of DRL agent (velocity feedback).

    图 3  控制前后阻力系数(CD)随时间变化图

    Figure 3.  Temporal variations of drag coefficient (CD) with and without active flow control.

    图 4  压力探针位置图 (a) 6个压力探针; (b) 14个压力探针; (c) 30个压力探针

    Figure 4.  Schematics of the pressure sensors position: (a) 6 pressure sensors; (b) 14 pressure sensors; (c) 30 pressure sensors.

    图 5  圆柱压力分布曲线, Re = 20

    Figure 5.  Pressure distribution curve along the cylinder surface, Re = 20.

    图 6  智能体训练过程(压力反馈)

    Figure 6.  Learning curves of DRL agent (wall pressure feedback).

    图 7  主动控制和无控制下圆柱的阻力系数(CD), 升力系数(CL)和射流速度(Ujet)变化曲线, Re = 100

    Figure 7.  Temporal variations of drag coefficient (CD), lift coefficient (CL), and jet velocity (Ujet) with and without active control, Re = 100.

    图 8  Re = 100时的瞬时流场云图(a1)—(d1)无控制下流向速度, 横向速度, 压力及涡量云图; (a2)—(d2)主动控制下流向速度, 横向速度, 压力及涡量云图

    Figure 8.  Instantaneous contours of flow fields at Re = 100: (a1)–(d1) Contours of streamwise velocity, transverse velocity, pressure, and vorticity without active control; (a2)–(d2) contours of streamwise velocity, transverse velocity, pressure, and vorticity with active control.

    图 9  Re = 100时的时均流场云图 (a1)—(c1)无控制下流向速度, 横向速度及压力云图; (a2)—(c2)主动控制下流向速度, 横向速度及压力云图

    Figure 9.  Time-averaged contours of flow fields at Re = 100: (a1)–(c1) Contours of streamwise velocity, spanwise velocity, pressure, and vorticity without active control; (a2)–(c2) contours of streamwise velocity, spanwise velocity, and pressure with active control.

    图 10  主动控制与无控制下的圆柱阻力系数(CD), 升力系数(CL)和射流速度(Ujet)变化曲线

    Figure 10.  Time-resolved value of drag coefficient (CD), lift coefficient (CL), and jet velocity (Ujet) with and without control.

    图 11  无控制下和施加主动控制下的时均流向速度云图 (a1) Re = 200, 无控制; (a2) Re = 200, 施加控制; (b1) Re = 400, 无控制; (B2) Re = 400, 施加控制

    Figure 11.  Time-averaged streamwise velocity fields without control and with active control: (a1) Re = 200, without control; (a2) Re = 200, with control; (b1) Re = 400, without control; (b2) Re = 400, with control.

    表 1  无关性验证(Re = 100)

    Table 1.  Validation and convergence study (Re = 100).

    MeshT/δt$ \overline {{C_{\text{D}}}} $$ \overline {\left| {{C_{\text{L}}}} \right|} $Sr
    768×14410003.1920.6120.3026
    1536×28820003.2010.6390.3019
    3072×57640003.2010.6400.3012
    DownLoad: CSV

    表 2  Re = 100时最大升阻力系数CD,max, CL,maxSr对比

    Table 2.  Comparison of CD,max, CL,max and Sr at Re = 100

    Ref.MeshT/δtCD, maxCL, maxSr
    Present1536×28820003.2451.0200.302
    Rabault et al.[7]926220003.2430.9990.300
    Tang et al.[23]258653.2301.0320.302
    Schäfer et al.[24]3.220
    ~3.240
    0.990
    ~1.010
    0.295
    ~0.305
    DownLoad: CSV
  • [1]

    任峰, 高传强, 唐辉 2021 航空学报 42 524686Google Scholar

    Ren F, Gao C Q, Tang H 2021 Acta Aeronaut. Astronaut. Sin 42 524686Google Scholar

    [2]

    Brunton S L, Noack B R 2015 Appl. Mech. Rev. 67 050801Google Scholar

    [3]

    Li R, Noack B R, Cordier L, Borée J 2017 Exp. Fluids 58 1Google Scholar

    [4]

    Schoppa W, Hussain F 1998 Phys. Fluids 10 1049Google Scholar

    [5]

    Duriez T, Brunton S L, Noack B R 2017 Machine learning control-taming nonlinear dynamics and turbulence (Cham, Switzerland: Springer International Publishing) pp1–229

    [6]

    Ren F, Hu H B, Tang H 2020 J. Hydrodyn. 32 247Google Scholar

    [7]

    Rabault J, Kuchta M, Jensen A, Réglade U, Cerardi N 2019 J. Fluid Mech. 865 281Google Scholar

    [8]

    Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O 2017 arXiv: 1707.06347

    [9]

    Paris R, Beneddine S, Dandois J 2021 J. Fluid Mech. 913 A25Google Scholar

    [10]

    Ren F, Rabault J, Tang H 2021 Phys. Fluids 33 037121Google Scholar

    [11]

    Ren F, Song B, Zhang Y, Hu H 2018 Comput. Fluids. 173 29Google Scholar

    [12]

    Rabault J, Kuhnle A 2019 Phys. Fluids 31 094105Google Scholar

    [13]

    郭照立 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第9—14页

    Guo Z L, Zhen C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp 9–14 (In Chinese)

    [14]

    何雅玲, 王勇, 李庆 2009 格子 Boltzmann 方法的理论及应用 (北京: 科学出版社) 第5—79页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Application (Beijing: Science Press) pp5–79 (In Chinese)

    [15]

    Qian Y H, D'Humières D, Lallemand P 1992 Europhys. Lett 17 479Google Scholar

    [16]

    D'Humières D 1992 AIAA J. 159 450

    [17]

    D'Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. Roy. Soc. A 360 437Google Scholar

    [18]

    He X, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [19]

    Guo Z L, Zhen C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [20]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [21]

    Yu D, Mei R, Luo L S, Shyy W 2003 Prog. Aeosp. Sci 39 329Google Scholar

    [22]

    Chen Y, Cai Q, Xia Z, Wang M, Chen S 2013 Phys. Rev. E 88 013303Google Scholar

    [23]

    Tang H, Rabault J, Kuhnle A, Kuhnle A, Wang Y, Wang T 2020 Phys. Fluids 32 053605Google Scholar

    [24]

    Schäfer M, Turek S, Durst F, Krause E 1997 Flow Simulation with High-Performance Computers II (Wiesbaden: Vieweg+Teubner Verlag) pp547–566

    [25]

    Van Hasselt H, Guez A, Silver D 2016 Proceedings of the AAAI conference on artificial intelligence Phoenix, Germany, February 12–17, 2016 p2094

    [26]

    Tiwari A, Vanka S P 2012 Int. J. Numer. Methods Fluids 69 481Google Scholar

    [27]

    Protas B, Wesfreid J 2002 Phys. Fluids 14 810Google Scholar

    [28]

    Bergmann M, Cordier L, Brancher J P 2005 Phys. Fluids 17 097101Google Scholar

    [29]

    Coutanceau M, Bouard R 1977 J. Fluid Mech. 79 231Google Scholar

  • [1] Luo Shi-Chao, Wu Li-Yin, Hu Shou-Chao, Gong Hong-Ming, Lü Ming-Lei, Kong Xiao-Ping. Analysis of wall catalytic effects on magnetohydrodynamic control of high-temperature non-quilibrium flow field. Acta Physica Sinica, 2025, 74(2): 024701. doi: 10.7498/aps.74.20241307
    [2] Zhang Zhen, Yi Shi-He, Liu Xiao-Lin, Chen Shi-Kang, Zhang Zhen. Flow evolution of mixed layer on convex curvature wall under hypersonic conditions. Acta Physica Sinica, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [3] Ji Meng, You Yun-Xiang, Han Pan-Pan, Qiu Xiao-Ping, Ma Qiao, Wu Kai-Jian. A wall-modeled hybrid RANS/LES model for flow around circular cylinder with coherent structures in subcritical Reynolds number regions. Acta Physica Sinica, 2024, 73(5): 054701. doi: 10.7498/aps.73.20231745
    [4] Song Jian, Ren Feng, Hu Hai-Bao, Chen Xiao-Peng. Effect of synthetic jet on circular cylinder radiated noise in laminar flow state. Acta Physica Sinica, 2023, 72(4): 044702. doi: 10.7498/aps.72.20221879
    [5] Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin. Flow feature extraction models based on deep learning. Acta Physica Sinica, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [6] Zhan Qing-Liang, Bai Chun-Jin, Ge Yao-Jun. Deep learning representation of flow time history for complex flow field. Acta Physica Sinica, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [7] Huang Ya-Dong, Wang Zhi-He, Zhou Ben-Mou. Transition control of cylinder wake via Lorentz force. Acta Physica Sinica, 2022, 71(22): 224702. doi: 10.7498/aps.71.20221357
    [8] Fang Fang, Bao Lin, Tong Bing-Gang. Heat transfer characteristics of shear layer impinging on wall based on oblique stagnation-point model. Acta Physica Sinica, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [9] Zhang Ye, Zhang Ran, Chang Qing, Li Hua. Surface effects on Couette gas flows in nanochannels. Acta Physica Sinica, 2019, 68(12): 124702. doi: 10.7498/aps.68.20190248
    [10] Cheng Xiao-Xiang, Zhao Lin, Ge Yao-Jun. Field measurements on flow past a circular cylinder in transcritical Reynolds number regime. Acta Physica Sinica, 2016, 65(21): 214701. doi: 10.7498/aps.65.214701
    [11] Wang Xiang, Chao Run-Ze, Guan Ren-Guo, Li Yuan-Dong, Liu Chun-Ming. Theoretical study on the model of metalic melt shearing flow near the surface and its effect on solidification microstructure. Acta Physica Sinica, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [12] Chen Yao-Hui, Dong Xiang-Rui, Chen Zhi-Hua, Zhang Hui, Li Bao-Ming, Fan Bao-Chun. Control of flow around hydrofoil using the Lorentz force. Acta Physica Sinica, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [13] Yin Ji-Fu, You Yun-Xiang, Li Wei, Hu Tian-Qun. Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force. Acta Physica Sinica, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [14] Chen Ying, Fu Shi-Xiao, Xu Yu-Wang, Zhou Qing, Fan Di-Xia. Hydrodynamic characters of a near-wall circular cylinder oscillating in cross flow direction in steady current. Acta Physica Sinica, 2013, 62(6): 064701. doi: 10.7498/aps.62.064701
    [15] Li Gang, Li Yi-Ming, Xu Yan-Ji, Zhang Yi, Li Han-Ming, Nie Chao-Qun, Zhu Jun-Qiang. Experimental study of near wall region flow control by dielectric barrier discharge plasma. Acta Physica Sinica, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [16] Chen Yao-Hui, Fan Bao-Chun, Chen Zhi-Hua, Zhou Ben-Mou. Experimental and numerical investigations on the electro-magnetic control of hydrofoil wake. Acta Physica Sinica, 2008, 57(2): 648-653. doi: 10.7498/aps.57.648
    [17] Zhu Lun-Wu, Weng Jia-Qiang, Gao Yuan, Fang Jin-Qing. . Acta Physica Sinica, 2002, 51(7): 1483-1488. doi: 10.7498/aps.51.1483
    [18] GAO YUAN, WENG JIA-QIANG, FANG JIN-QING, LUO XIAO-SHU. A METHOD OF MULTI PERIODICAL INTERVAL CONTROL BEAM HALO-CHAOS BY WAVELET FEEDBACK CONTROL FUNCTION. Acta Physica Sinica, 2001, 50(8): 1440-1446. doi: 10.7498/aps.50.1440
    [19] FANG JIN-QING, GAO YUAN, WENG JIA-QIANG, LUO XIAO-SHU, CHEN GUAN-RONG. CONTROLLING BEAM HALO-CHAOS USING WAVELET FUNCTION FEEDBACK METHOD. Acta Physica Sinica, 2001, 50(3): 435-439. doi: 10.7498/aps.50.435
    [20] . Acta Physica Sinica, 1936, 2(2): 145-153. doi: 10.7498/aps.2.145
Metrics
  • Abstract views:  6235
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  25 November 2021
  • Accepted Date:  16 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回