-
The femtosecond pulsed laser is used to study the quantitative evaluation technology of the single event burnout (SEB) effect in GaN power devices. In this work, we establish two pulsed-laser effective energy transmission models for different device structures, analyzing and verifying the equivalent relationship between the effective laser energy and the heavy ion linear energy transmission (LET). The critical parameters of models are confirmed, including laser parameters and device parameters. The interface reflectivity between the layers is mainly considered. Meanwhile, the parameters are corrected by the multiple reflections between the interfaces, and the laser energy of the second reflection of the metal layer is considered. These measures can be used to reduce the error of the effective energy in the device active area. In addition, we validate the models experimentally. A gallium nitride high electron mobility transistor (GaN HEMT) and a schottky barrier diode (SBD) power device are used in the experiment on the irradiation by a femtosecond pulse laser. The effective laser energy thresholds and the laser equivalent LET threshold with two incident wavelengths of the SEB are calculated. The theoretical calculation value and the actual measured value are compared. The selcction basis of the laser wavelengths is given by the detailed study. The support for the laser quantitative evaluation and the protection design of the SEB in GaN power devices is provided by this work.
-
Keywords:
- GaN power devices /
- femtosecond pulsed laser /
- Single Event Burnout /
- equivalent LET
[1] Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H 2003 IEEE Trans. Electron Devices. 50 2528Google Scholar
[2] Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini A, Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332Google Scholar
[3] Millán J, Godignon P, Perpiñà X, Tomás A P, Rebollo J 2014 IEEE Trans. Power Electron. 29 2155Google Scholar
[4] Zerarka M, Crepel O 2018 Microelectron. Reliab. 88 984Google Scholar
[5] Shikhar S, Ashish S, Subhashish B 2015 IEEE Applied Power Electronics Conference and Exposition Charlotte, NC, USA, March 15–19, 2015 p1048
[6] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 11 116102Google Scholar
Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 11 116102Google Scholar
[7] Zhang F, Wang Y, Wu X, Cao F 2020 IEEE Access 8 12445Google Scholar
[8] Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar
[9] Cai S J, Tang Y S, Wei Y Y, Wong L, Chen Y L, Wang K L, Chen M, Schrimpf R D, Keay J C, Galloway K F 2000 IEEE Trans. Electron Devices. 47 304Google Scholar
[10] Luo B, Johnson J W, Ren F 2001 Appl. Phys. Let. 79 2196Google Scholar
[11] Kim H Y, Kim J, Liu L, Lo C F, Ren F, Pearton S J 2012 J. Vac. Sci. Technol. 30 012202Google Scholar
[12] Zerarka M, Austin P, Toulon G, Morancho F, Arbess H, Tasselli J 2012 IEEE Trans. Electron Devices. 59 3482Google Scholar
[13] Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar
[14] Luo X, Wang Y, Hao Y, Li X J, Liu C M, Fei X X, Yu C H, Cao F 2019 IEEE Trans. Electron Devices. 66 1118Google Scholar
[15] Buchner S, Howard J, Poivey C, McMorrow D, Pease R 2004 IEEE Trans. Nucl. Sci. 51 3716Google Scholar
[16] 韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛 2017 深空探测学报 4 577Google Scholar
Han J W, Shangguan S P, Ma Y Q, Zhu X, Chen R, Li S 2017 J. Deep Space Explor. 4 577Google Scholar
[17] Buchner S, Miller F, Pouget V, McMorrow D 2013 IEEE Trans. Nucl. Sci. 60 1852Google Scholar
[18] Ngom C, Pouget V, Zerarka M, Coccetti F, Crepel O, Touboul A, Matmat M 2021 Microelectron. Reliab. 126 114339
[19] Khachatrian A, Roche N J, Buchner S, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar
[20] Roche N J, Khachatrian A, King M, Buchner S, Halles J, Kaplar R, Armstrong A, Kizilyalli I C, Cunningham P D, Melinger J S, Warner J H, McMorrow D 2016 16 th European Conference on Radiation and Its Effects on Components and Systems(RADECS) Bremen, Germany, September 19–23, 2016
[21] Khachatrian A, Roche N J, Buchner S, Koehler A D, Anderson T J, Cavrois V F, Muschitiello M, McMorrow D, Weaver B, Hobart K D 2015 IEEE Trans. Nucl. Sci. 62 2743Google Scholar
[22] 上官士鹏 2020 博士学位论文 (北京: 中国科学院大学)
Shangguan S P 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[23] Refractive index database, Polyanskiy M N https://refractiveindex.info/ [2021-12-5]
[24] Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar
[25] Sun C K, Liang J C, Wang J C, Kao F J 2000 Appl. Phys. Let. 76 439Google Scholar
[26] Chen H, Huang X, Fu H, Lu Z, Zhang X, Montes J A, Zhao Y 2017 Appl. Phys. Lett. 110 181110Google Scholar
-
表 1 不同波长的激光在不同厚度的Al0.2Ga0.8N中的吸收系数与光损
Table 1. Absorption coefficients and optical losses of different laser wavelengths in different thicknesses of Al0.2Ga0.8N.
波长/nm 600 620 650 700 720 吸收系数/cm–1 210 190 172 155 143 30 nm厚光损 0.06% 0.06% 0.05% 0.05% 0.04% 50 nm厚光损 0.1% 0.1% 0.09% 0.08% 0.07% 70 nm厚光损 0.14% 0.13% 0.12% 0.11% 0.1% 表 2 不同波长的激光在材料中的空气中反射率与折射率
Table 2. The reflectivity and refractive index of different laser wavelengths from air to the material.
光学参数 材料 波长/nm 600 620 650 700 720 空气中
反射率Si3N4 0.118 0.117 0.117 0.116 0.116 Al0.2Ga0.8N 0.14 0.14 0.14 0.14 0.14 GaN 0.169 0.168 0.167 0.165 0.165 蓝宝石 0.08 0.08 0.08 0.08 0.08 折射率 Si3N4 2.04 2.04 2.04 2.03 2.03 Al0.2Ga0.8N 2.18 2.18 2.18 2.17 2.17 GaN 2.31 2.31 2.31 2.31 2.31 蓝宝石 1.76 1.76 1.76 1.76 1.75 表 3 激光试验结果
Table 3. Laser test results.
器件 器件工作
电压/V波长/nm 诱发SEB的
激光能量/nJ器件1 520 620 3.3 720 6 器件2 90 620 3.8 720 4.5 表 4 器件有效能量
$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ Table 4. Device effective energy
$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ .器件 入射激光
波长/nm入射激光
能量/nJ有效能
量$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $/nJ器件1 620 3.3 2.91 720 6 5.29 器件2 620 3.8 3.56 720 4.5 6.44 表 5 器件重离子SEB结果
Table 5. SEB results (Heavy ion) of the device.
器件 毁坏时最低
工作电压/VLET (GaN)/
(MeV·cm2·mg–1)器件1 520 18 器件2 90 28.5 表 6 激光ELET与重离子LET对比
Table 6. Comparison of laser ELET and Heavy ion LET.
器件 毁坏时工作
电压/V入射激光
波长/nm有效能量
$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $/nJ激光ELET/
(MeV·cm2·mg–1)重离子LET (GaN)/
MeV·cm2/·mg–1)器件1 520 620 2.91 18.97 18 720 5.29 18.47 器件2 90 620 3.56 28.39 28.5 720 6.44 27.37 -
[1] Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H 2003 IEEE Trans. Electron Devices. 50 2528Google Scholar
[2] Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini A, Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332Google Scholar
[3] Millán J, Godignon P, Perpiñà X, Tomás A P, Rebollo J 2014 IEEE Trans. Power Electron. 29 2155Google Scholar
[4] Zerarka M, Crepel O 2018 Microelectron. Reliab. 88 984Google Scholar
[5] Shikhar S, Ashish S, Subhashish B 2015 IEEE Applied Power Electronics Conference and Exposition Charlotte, NC, USA, March 15–19, 2015 p1048
[6] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 11 116102Google Scholar
Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 11 116102Google Scholar
[7] Zhang F, Wang Y, Wu X, Cao F 2020 IEEE Access 8 12445Google Scholar
[8] Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar
[9] Cai S J, Tang Y S, Wei Y Y, Wong L, Chen Y L, Wang K L, Chen M, Schrimpf R D, Keay J C, Galloway K F 2000 IEEE Trans. Electron Devices. 47 304Google Scholar
[10] Luo B, Johnson J W, Ren F 2001 Appl. Phys. Let. 79 2196Google Scholar
[11] Kim H Y, Kim J, Liu L, Lo C F, Ren F, Pearton S J 2012 J. Vac. Sci. Technol. 30 012202Google Scholar
[12] Zerarka M, Austin P, Toulon G, Morancho F, Arbess H, Tasselli J 2012 IEEE Trans. Electron Devices. 59 3482Google Scholar
[13] Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar
[14] Luo X, Wang Y, Hao Y, Li X J, Liu C M, Fei X X, Yu C H, Cao F 2019 IEEE Trans. Electron Devices. 66 1118Google Scholar
[15] Buchner S, Howard J, Poivey C, McMorrow D, Pease R 2004 IEEE Trans. Nucl. Sci. 51 3716Google Scholar
[16] 韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛 2017 深空探测学报 4 577Google Scholar
Han J W, Shangguan S P, Ma Y Q, Zhu X, Chen R, Li S 2017 J. Deep Space Explor. 4 577Google Scholar
[17] Buchner S, Miller F, Pouget V, McMorrow D 2013 IEEE Trans. Nucl. Sci. 60 1852Google Scholar
[18] Ngom C, Pouget V, Zerarka M, Coccetti F, Crepel O, Touboul A, Matmat M 2021 Microelectron. Reliab. 126 114339
[19] Khachatrian A, Roche N J, Buchner S, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar
[20] Roche N J, Khachatrian A, King M, Buchner S, Halles J, Kaplar R, Armstrong A, Kizilyalli I C, Cunningham P D, Melinger J S, Warner J H, McMorrow D 2016 16 th European Conference on Radiation and Its Effects on Components and Systems(RADECS) Bremen, Germany, September 19–23, 2016
[21] Khachatrian A, Roche N J, Buchner S, Koehler A D, Anderson T J, Cavrois V F, Muschitiello M, McMorrow D, Weaver B, Hobart K D 2015 IEEE Trans. Nucl. Sci. 62 2743Google Scholar
[22] 上官士鹏 2020 博士学位论文 (北京: 中国科学院大学)
Shangguan S P 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[23] Refractive index database, Polyanskiy M N https://refractiveindex.info/ [2021-12-5]
[24] Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar
[25] Sun C K, Liang J C, Wang J C, Kao F J 2000 Appl. Phys. Let. 76 439Google Scholar
[26] Chen H, Huang X, Fu H, Lu Z, Zhang X, Montes J A, Zhao Y 2017 Appl. Phys. Lett. 110 181110Google Scholar
Catalog
Metrics
- Abstract views: 5273
- PDF Downloads: 120
- Cited By: 0