Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm

Zhu Dong Xu Han Zhou Yin Wu Bin Cheng Bing Wang Kai-Nan Chen Pei-Jun Gao Shi-Teng Weng Kan-Xing Wang He-Lin Peng Shu-Ping Qiao Zhong-Kun Wang Xiao-Long Lin Qiang

Citation:

Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm

Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang
PDF
HTML
Get Citation
  • The precision dynamic measurement of absolute gravity based on the cold atom interferometer can provide a new method for marine gravimetry, so that it has attracted more attention. Based on the homemade shipborne cold atom interferometric absolute gravity measurement system, we carry out a series of measurement experiments in a certain area of the South China Sea. Under dynamic conditions, the suppression of measurement noise is essential for the improvement of the measurement performance. According to the physical model of the measurement system, in this paper a data processing method is proposed based on the extended Kalman filter algorithm for the absolute gravity dynamic measurement. The observed atomic interference fringe data are filtered in the time domain to estimate the absolute gravity value. Based on this processing method, the sensitivity of absolute gravity measurement under the condition of ship speed less than 2.1 km/h is improved from 300.2 mGal/Hz1/2 to 136.8 mGal/Hz1/2 (T = 4 ms). Comparing the processed data with the data calculated from the earth gravity model (XGM2019), it is found that both of the data are in good agreement. These results confirm the effectiveness of the data processing method proposed in this paper, and provide a new processing method of suppressing the measurement noise of shipborne cold atom interferometric absolute gravity measurement system.
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601602), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334). the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program (Grant No. DD20189831), the Experiments for Space Exploration Program and the Qian Xuesen Laboratory, China Academy of Space Technology (Grant No. TKTSPY-2020-06-01)
    [1]

    Kasevich M, Chu S 1992 Appl. Phys. B:Photophys. Laser Chem. 54 321Google Scholar

    [2]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [3]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [4]

    Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 1

    [5]

    Fu Z, Wang Q, Wang Z, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [6]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [7]

    Jiang Z, Palinkas V, Arias F E, et al. 2012 Metrologia 49 666Google Scholar

    [8]

    Farah T, Guerlin C, Landragin A, Bouyer P, Gaffet S, Dos Santos F P, Merlet S 2014 Gyroscopy and Navigation 5 266Google Scholar

    [9]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [10]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [11]

    Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [12]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [13]

    Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [14]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [15]

    Wu S, Feng J, Li C, Su D, Wang Q, Hu R, Mou L 2021 J. Geod. 95 63Google Scholar

    [16]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [17]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [18]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627Google Scholar

    [19]

    Merlet S, Le Goueet J, Bodart Q, Clairon A, Landragin A, Dos Santos F P, Rouchon P 2009 Metrologia 46 87Google Scholar

    [20]

    Reif K, Gunther S, Yaz E, Unbehauen R 1999 IEEE Trans. Autom. Control 44 714Google Scholar

    [21]

    Kappl J J 1971 IEEE Trans. Aerosp. Electron. Syst. aes-7 79

    [22]

    Sastry V A, Noton A R M 1971 IEEE Trans. Autom. Control 16 260Google Scholar

    [23]

    Canciani A, Raquet J 2012 Proceedings of the 2012 International Technical Meeting of The Institute of Navigation, 2012 pp151–185

    [24]

    Tennstedt B, Schön S 2021 Proceedings of 28th St. Petersburg International Conference on Integrated Navigation Systems, 2021

    [25]

    Jiménez-Martínez R, Kołodyński J, Troullinou C, Lucivero V G, Kong J, Mitchell M W 2018 Phys. Rev. Lett. 120 040503Google Scholar

    [26]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [27]

    Wu B, Zhu D, Cheng B, Wu L, Wang K, Wang Z, Shu Q, Li R, Wang H, Wang X, Lin Q 2019 Opt. Express 27 11252Google Scholar

    [28]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z-J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [29]

    Cheinet P, Canuel B, Dos Santos F P, Gauguet A, Yver-Leduc F, Landragin A 2008 IEEE Trans. Instrum. Meas. 57 1141Google Scholar

    [30]

    Zingerle P, Pail R, Gruber T, Oikonomidou X 2020 J. Geod. 94 1Google Scholar

    [31]

    Zhu D, Zhou Y, Wu B, Weng K, Wang K, Cheng B, Lin Q 2021 Appl. Opt. 60 7910Google Scholar

    [32]

    Gauguet A, Mehlstäubler T E, Lévèque T, Gouët J L, Chaibi O, Canuel B, Clairon A, Santos F P D, Landragin A 2008 Phys. Rev. A 78 4702

    [33]

    Baumann H, Klingele E E, Marson I 2012 Geophys. Prospect. 60 361Google Scholar

  • 图 1  船载冷原子干涉式绝对重力动态测量原理

    Figure 1.  The principle of absolute gravity dynamic measurement based on cold atom interferometer on ship.

    图 2  船载绝对重力动态测量系统示意图

    Figure 2.  Schematic diagram of marine dynamic absolute gravity measurement system.

    图 3  可移动的原子重力仪实验室 (a)实验室内部仪器设备布局示意图; (b)可移动实验室实物图

    Figure 3.  Transportable laboratory for atomic gravimeter: (a) Schematic diagram of the internal layout of instruments and equipments in the laboratory; (b) photo of the transportable laboratory.

    图 4  绝对重力动态测量的航线与船速 (a)航行路线; (b)航行速度

    Figure 4.  Route and ship speed of absolute gravity dynamic measurement: (a) Sailing route of the ship; (b) speed of the ship.

    图 5  船载动态测量的振动环境与原子干涉条纹 (a)竖直方向振动加速度的功率谱密度(PSD); (b)原子干涉条纹

    Figure 5.  The vibration environment and atomic interference fringes for shipborne dynamic measurements: (a) Power spectral density (PSD) of the vertical vibration acceleration; (b) atomic interference fringes.

    图 6  绝对重力值原始数据

    Figure 6.  Raw data for absolute gravity values.

    图 7  通过不同算法获得的重力值的Allan偏差数据

    Figure 7.  Allan deviation data of gravity values obtained by different algorithms.

    图 8  动态绝对重力数据处理结果 (a)使用不同算法获得的绝对重力值; (b)修正系统误差后的绝对重力值; (c)绝对重力值gEst与由重力模型计算的结果的残差数据

    Figure 8.  Comparison of the absolute gravity data: (a) Absolute gravity values obtained by the different algorithms; (b) absolute gravity values obtained after correcting the systematic errors; (c) the residual data between the absolute gravity values gEst and the calculated results based on the gravity model.

  • [1]

    Kasevich M, Chu S 1992 Appl. Phys. B:Photophys. Laser Chem. 54 321Google Scholar

    [2]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [3]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [4]

    Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 1

    [5]

    Fu Z, Wang Q, Wang Z, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [6]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [7]

    Jiang Z, Palinkas V, Arias F E, et al. 2012 Metrologia 49 666Google Scholar

    [8]

    Farah T, Guerlin C, Landragin A, Bouyer P, Gaffet S, Dos Santos F P, Merlet S 2014 Gyroscopy and Navigation 5 266Google Scholar

    [9]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [10]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [11]

    Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [12]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [13]

    Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [14]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [15]

    Wu S, Feng J, Li C, Su D, Wang Q, Hu R, Mou L 2021 J. Geod. 95 63Google Scholar

    [16]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [17]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [18]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627Google Scholar

    [19]

    Merlet S, Le Goueet J, Bodart Q, Clairon A, Landragin A, Dos Santos F P, Rouchon P 2009 Metrologia 46 87Google Scholar

    [20]

    Reif K, Gunther S, Yaz E, Unbehauen R 1999 IEEE Trans. Autom. Control 44 714Google Scholar

    [21]

    Kappl J J 1971 IEEE Trans. Aerosp. Electron. Syst. aes-7 79

    [22]

    Sastry V A, Noton A R M 1971 IEEE Trans. Autom. Control 16 260Google Scholar

    [23]

    Canciani A, Raquet J 2012 Proceedings of the 2012 International Technical Meeting of The Institute of Navigation, 2012 pp151–185

    [24]

    Tennstedt B, Schön S 2021 Proceedings of 28th St. Petersburg International Conference on Integrated Navigation Systems, 2021

    [25]

    Jiménez-Martínez R, Kołodyński J, Troullinou C, Lucivero V G, Kong J, Mitchell M W 2018 Phys. Rev. Lett. 120 040503Google Scholar

    [26]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [27]

    Wu B, Zhu D, Cheng B, Wu L, Wang K, Wang Z, Shu Q, Li R, Wang H, Wang X, Lin Q 2019 Opt. Express 27 11252Google Scholar

    [28]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z-J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [29]

    Cheinet P, Canuel B, Dos Santos F P, Gauguet A, Yver-Leduc F, Landragin A 2008 IEEE Trans. Instrum. Meas. 57 1141Google Scholar

    [30]

    Zingerle P, Pail R, Gruber T, Oikonomidou X 2020 J. Geod. 94 1Google Scholar

    [31]

    Zhu D, Zhou Y, Wu B, Weng K, Wang K, Cheng B, Lin Q 2021 Appl. Opt. 60 7910Google Scholar

    [32]

    Gauguet A, Mehlstäubler T E, Lévèque T, Gouët J L, Chaibi O, Canuel B, Clairon A, Santos F P D, Landragin A 2008 Phys. Rev. A 78 4702

    [33]

    Baumann H, Klingele E E, Marson I 2012 Geophys. Prospect. 60 361Google Scholar

  • [1] Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [2] Wen Yi, Wu Kang, Wang Li-Jun. Analysis of vibration correction performance of vibration sensor for absolute gravity measurement. Acta Physica Sinica, 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [3] Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang. Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter. Acta Physica Sinica, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [4] Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Experiment on dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu. Effect of vibration noise with fixed phase on absolute gravimetry applying vibration isolator. Acta Physica Sinica, 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [6] Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers. Acta Physica Sinica, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] Analysis of vibration correction performance of vibration sensor for absolute gravity measurement. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211686
    [8] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211449
    [9] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [10] Lin Dan-Ying, Niu Jing-Jing, Liu Xiong-Bo, Zhang Xiao, Zhang Jiao, Yu Bin, Qu Jun-Le. Phasor analysis of fluorescence lifetime data and its application. Acta Physica Sinica, 2020, 69(16): 168703. doi: 10.7498/aps.69.20200554
    [11] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [12] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [13] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [14] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [15] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [16] Yang Wei, Sun Da-Li, Zhou Lin, Wang Jin, Zhan Ming-Sheng. Zeeman slowing and magneto-optically trapping of lithium atoms in atomic interferometry experiments. Acta Physica Sinica, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [17] Hu Hua, Wu Kang, Shen Lei, Li Gang, Wang Li-Jun. A new high precision absolute gravimeter. Acta Physica Sinica, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [18] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [20] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
Metrics
  • Abstract views:  5680
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2022
  • Accepted Date:  14 March 2022
  • Available Online:  29 March 2022
  • Published Online:  05 July 2022

/

返回文章
返回