Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of polarity compensation on exchange bias field in LaMnO3/LaNiO3 superlattices

Wei Hao-Ming Zhang Ying Zhang Zhou Wu Yang-Qing Cao Bing-Qiang

Citation:

Influence of polarity compensation on exchange bias field in LaMnO3/LaNiO3 superlattices

Wei Hao-Ming, Zhang Ying, Zhang Zhou, Wu Yang-Qing, Cao Bing-Qiang
cstr: 32037.14.aps.71.20220365
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Perovskite superlattices have received enormous attention in recent years, for they possess several new phases of quantum matter. In particular, an unexpected exchange bias effect in (111)-oriented superlattices composed of ferromagnetic LaMnO3 and paramagnetic LaNiO3 is observed, which has aroused broad interest. In this work, three kinds of LaMnO3/LaNiO3 superlattices with (001), (110), and (111) out-of-plane orientation are fabricated by pulsed laser deposition, and also studied systemically. It is found that the superlattices are epitaxially grown on the SrTiO3 substrates without strain relaxation. The superlattices have a monolayer terraced structure with a surface roughness below 0.1 nm. Electrical transport measurements reveal a Mott conducting behavior with strong localization of electrons in the superlattices. All the superlattices with different orientations exhibit exchange bias phenomenon. The field cooling and zero field cooling curves indicate that there are two different magnetic components in the superlattice in a low temperature range. Further analysis of the values of exchange field reveals that the exchange bias field is related to the orientation and polarity of the superlattices. Different superlattices form different charged planes stacked along out-of-plane orientation, leading to a polarity match/mismatch at the interface between the superlattices and substrates. The surface reconstructions that act as compensating for the polar mismatch influence the exchange bias field of the superlattices. It is observed that the intensities of the exchange field of the polar-matched superlattices are higher than those of the polar-mismatched superlattices at different temperatures. These results are helpful in further understanding the magnetoelectric transport properties in the perovskite superlattices.
      Corresponding author: Wei Hao-Ming, weihm@qfnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904198, 51902179, 51872161).
    [1]

    Wei H M, Yang C, Wu Y Q, Cao B Q, Lorenz M, Grundmann M 2020 J. Mater. Chem. C 8 15575Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Pena M A, Fierro J L 2001 Chem. Rev. 101 1981Google Scholar

    [4]

    Cherniukh I, Raino G, Stoferle T, et al. 2021 Nature 593 535Google Scholar

    [5]

    Noguchi Y, Matsuo H 2021 Nanomaterials 11 1857Google Scholar

    [6]

    Liu Y, Siron M, Lu D, Yang J J, dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q, Lei T, Kang J, Jin J B, Ciston J, Yang P D 2019 J. Am. Chem. Soc. 141 13028Google Scholar

    [7]

    Haislmaier R C, Lapano J, Yuan Y K, Stone G, Dong Y Q, Zhou H, Alem N, Engel-Herbert R 2018 APL Mater. 6 111104Google Scholar

    [8]

    Brahlek M, Sen Gupta A, Lapano J, Roth J, Zhang H T, Zhang L, Haislmaier R, Engel-Herbert R 2018 Adv. Funct. Mater. 28 1702772Google Scholar

    [9]

    Wei H M, Jenderka M, Bonholzer M, Grundmann M, Lorenz M 2015 Appl. Phys. Lett. 106 042103Google Scholar

    [10]

    周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 物理学报 67 157505Google Scholar

    Zhou L, Wang X, Zhang H M, Shen X D, Dong S, Long Y W 2018 Acta Phys. Sin. 67 157505Google Scholar

    [11]

    Yamasaki Y, Okuyama D, Nakamura M, et al. 2011 J. Phys. Soc. Jpn. 80 073601Google Scholar

    [12]

    张鹏, 朴红光, 张英德, 黄焦宏 2021 物理学报 70 157501Google Scholar

    Zhang P, Piao H G, Zhang Y D, Huang J H 2021 Acta Phys. Sin. 70 157501Google Scholar

    [13]

    Ouellette D G, Lee S B, Son J, Stemmer S, Balents L, Millis A J, Allen S J 2010 Phys. Rev. B 82 165112Google Scholar

    [14]

    Gibert M, Zubko P, Scherwitzl T, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 87 195116Google Scholar

    [16]

    Piamonteze C, Gibert M, Heidler J, et al. 2015 Phys. Rev. B 92 014426Google Scholar

    [17]

    Lee A T, Han M J 2013 Phys. Rev. B 88 035126Google Scholar

    [18]

    Wei H M, Barzola-Quiquia J L, Yang C, et al. 2017 Appl. Phys. Lett. 110 102403Google Scholar

    [19]

    Zang J L, Zhou G W, Bai Y H, Quan Z Y, Xu X H 2017 Sci. Rep. 7 10557Google Scholar

    [20]

    Pan S Y, Shi L, Zhao J Y, Zhou S M, Xu X M 2018 Appl. Phys. Lett. 112 141602Google Scholar

    [21]

    Kitamura M, Kobayashi M, Sakai E, et al. 2019 Phys. Rev. B 100 245132Google Scholar

    [22]

    Zhang J, Zhou J T, Luo Z L, Chen Y B, Zhou J, Lin W W, Lu M Hm Zhang S T, Gao C, Wu D, Chen Y F 2020 Phys. Rev. B 101 014422Google Scholar

    [23]

    Tanguturi R G, Zhou P, Yan Z, Qi Y J, Zhang T J 2021 Phys. Status Solidi B 258 2000527Google Scholar

    [24]

    Brenig W 1973 Philos. Mag. 27 1093Google Scholar

    [25]

    Khan Z H, Husain M, Perng T P, Salh N, Habib S 2008 J. Phys. Condens. Matter 20 475207Google Scholar

    [26]

    Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W, Bhattacharya A 2013 Phys. Rev. B 88 144411Google Scholar

    [27]

    Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102Google Scholar

    [28]

    Wei H M, Grundmann M, Lorenz M 2016 Appl. Phys. Lett. 109 082108Google Scholar

    [29]

    Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Feeland J W, Chakhalian J 2010 Appl. Phys. Lett. 96 133111Google Scholar

    [30]

    Chakraverty S, Saito M, Tsukimoto S, Ikuhara Y, Ohtomo A, Kawasaki M 2011 Appl. Phys. Lett. 99 223101Google Scholar

    [31]

    Middey S, Meyers D, Kareev M, Moon E J, Gray B A, Liu X, Freeland J W, Chakhalian J 2012 Appl. Phys. Lett. 101 261602Google Scholar

  • 图 1  (a) 生长在STO (110) 衬底上的LMO/LNO超晶格AFM图; (b) 超晶格表面线扫描图

    Figure 1.  (a) AFM image of LMO/LNO superlattice on STO (110) substrate; (b) line-scan of superlattice.

    图 2  (110) 取向的超晶格在(a) (110) 对称峰 和 (b) (321) 非对称峰附近的倒易空间图

    Figure 2.  Reciprocal space maps of (110)-oriented superlattice around the (a) symmetric (110) and (b) asymmetric (321) reflexes.

    图 3  (a) (110) 取向超晶格的变温电阻率曲线; (b) 方块电导率与温度的函数关系式, 其中虚线是线性拟合

    Figure 3.  (a) Temperature dependence of the sheet resistance of (110)-oriented superlattice; (b) logarithm of sheet conductance ln (σ) as a function of T –1/3, where the red line is linear fitting.

    图 4  不同温度下 (110) 取向超晶格的磁滞回线(1 emu = 10–3 A·m2), 被测样品在1 T磁场下冷却

    Figure 4.  Hysteresis loops for the (110)-oriented superlattice at different constant temperatures after cooling the sample with a field of 1 T.

    图 5  场冷和零场冷下 (110) 取向超晶格的变温磁矩曲线, 插图是50 K以下的局部放大图

    Figure 5.  Magnetic moment versus temperature of (110)-oriented superlattice in the ZFC and FC states. The inset is the zoom-in below 50 K.

    图 6  不同取向超晶格交换场强对比图

    Figure 6.  Comparison of exchange bias field of superlattices with different orientations.

    图 7  不同取向超晶格和衬底的结构和极化示意图

    Figure 7.  Schematics of structure and polarity along different directions for superlattices and substrates.

  • [1]

    Wei H M, Yang C, Wu Y Q, Cao B Q, Lorenz M, Grundmann M 2020 J. Mater. Chem. C 8 15575Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Pena M A, Fierro J L 2001 Chem. Rev. 101 1981Google Scholar

    [4]

    Cherniukh I, Raino G, Stoferle T, et al. 2021 Nature 593 535Google Scholar

    [5]

    Noguchi Y, Matsuo H 2021 Nanomaterials 11 1857Google Scholar

    [6]

    Liu Y, Siron M, Lu D, Yang J J, dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q, Lei T, Kang J, Jin J B, Ciston J, Yang P D 2019 J. Am. Chem. Soc. 141 13028Google Scholar

    [7]

    Haislmaier R C, Lapano J, Yuan Y K, Stone G, Dong Y Q, Zhou H, Alem N, Engel-Herbert R 2018 APL Mater. 6 111104Google Scholar

    [8]

    Brahlek M, Sen Gupta A, Lapano J, Roth J, Zhang H T, Zhang L, Haislmaier R, Engel-Herbert R 2018 Adv. Funct. Mater. 28 1702772Google Scholar

    [9]

    Wei H M, Jenderka M, Bonholzer M, Grundmann M, Lorenz M 2015 Appl. Phys. Lett. 106 042103Google Scholar

    [10]

    周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 物理学报 67 157505Google Scholar

    Zhou L, Wang X, Zhang H M, Shen X D, Dong S, Long Y W 2018 Acta Phys. Sin. 67 157505Google Scholar

    [11]

    Yamasaki Y, Okuyama D, Nakamura M, et al. 2011 J. Phys. Soc. Jpn. 80 073601Google Scholar

    [12]

    张鹏, 朴红光, 张英德, 黄焦宏 2021 物理学报 70 157501Google Scholar

    Zhang P, Piao H G, Zhang Y D, Huang J H 2021 Acta Phys. Sin. 70 157501Google Scholar

    [13]

    Ouellette D G, Lee S B, Son J, Stemmer S, Balents L, Millis A J, Allen S J 2010 Phys. Rev. B 82 165112Google Scholar

    [14]

    Gibert M, Zubko P, Scherwitzl T, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 87 195116Google Scholar

    [16]

    Piamonteze C, Gibert M, Heidler J, et al. 2015 Phys. Rev. B 92 014426Google Scholar

    [17]

    Lee A T, Han M J 2013 Phys. Rev. B 88 035126Google Scholar

    [18]

    Wei H M, Barzola-Quiquia J L, Yang C, et al. 2017 Appl. Phys. Lett. 110 102403Google Scholar

    [19]

    Zang J L, Zhou G W, Bai Y H, Quan Z Y, Xu X H 2017 Sci. Rep. 7 10557Google Scholar

    [20]

    Pan S Y, Shi L, Zhao J Y, Zhou S M, Xu X M 2018 Appl. Phys. Lett. 112 141602Google Scholar

    [21]

    Kitamura M, Kobayashi M, Sakai E, et al. 2019 Phys. Rev. B 100 245132Google Scholar

    [22]

    Zhang J, Zhou J T, Luo Z L, Chen Y B, Zhou J, Lin W W, Lu M Hm Zhang S T, Gao C, Wu D, Chen Y F 2020 Phys. Rev. B 101 014422Google Scholar

    [23]

    Tanguturi R G, Zhou P, Yan Z, Qi Y J, Zhang T J 2021 Phys. Status Solidi B 258 2000527Google Scholar

    [24]

    Brenig W 1973 Philos. Mag. 27 1093Google Scholar

    [25]

    Khan Z H, Husain M, Perng T P, Salh N, Habib S 2008 J. Phys. Condens. Matter 20 475207Google Scholar

    [26]

    Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W, Bhattacharya A 2013 Phys. Rev. B 88 144411Google Scholar

    [27]

    Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102Google Scholar

    [28]

    Wei H M, Grundmann M, Lorenz M 2016 Appl. Phys. Lett. 109 082108Google Scholar

    [29]

    Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Feeland J W, Chakhalian J 2010 Appl. Phys. Lett. 96 133111Google Scholar

    [30]

    Chakraverty S, Saito M, Tsukimoto S, Ikuhara Y, Ohtomo A, Kawasaki M 2011 Appl. Phys. Lett. 99 223101Google Scholar

    [31]

    Middey S, Meyers D, Kareev M, Moon E J, Gray B A, Liu X, Freeland J W, Chakhalian J 2012 Appl. Phys. Lett. 101 261602Google Scholar

Metrics
  • Abstract views:  7329
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2022
  • Accepted Date:  29 March 2022
  • Available Online:  21 July 2022
  • Published Online:  05 August 2022
  • /

    返回文章
    返回