Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons

Zhang Yan Zong Shuo-Tong Sun Zhi-Gang Liu Hong-Xia Chen Feng-Hua Zhang Ke-Wei Hu Ji-Fan Zhao Tong-Yun Shen Bao-Gen

Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Phys. Sin., 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
Citation: Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Phys. Sin., 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683

Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons

Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The performance of magnetocaloric effect materials is one of the key factors restricting the development of magnetic refrigeration technology. Materials with anisotropic magnetocaloric effect can be used in the rotary magnetic refrigeration technology, which is beneficial to the simplification of refrigeration devices. In this work, the magnetic properties, magnetocaloric effects, and magnetic anisotropies of rapidly quenched HoCoSi compounds are investigated. At low temperatures below Tt = 5.7 K, the HoCoSi ferromagnetism and helical magnetism coexist. With the increase of temperature, the HoCoSi undergoes a second-order phase transition from ferromagnetic (FM) to paramagnetic (PM) phase at TC = 13.7 K. Both XRD and SEM show that the HoCoSi has a preferred orientation. In order to obtain a large magnetocaloric effect and to determine the effect of preferred orientation on magnetism and magnetocaloric effect, the isothermal magnetization curves of the 10 m/s–HoCoSi fast quenched belt in the directions of H parallel and perpendicular to texture around the Curie temperature are analyzed. The corresponding magnetic entropy change (–ΔSM) and magnetic refrigeration capacity (RC) are calculated. Under the magnetic field changing from 0 to 5 T, the value of –ΔSM is 22 J/(kg·K) in the direction of H parallel to the texture and 12 J/(kg·K) in the direction of H perpendicular to texture , and their corresponding values of RC(RCP)are 360 (393.8) J·kg–1 and 160 (254.4) J/kg. The value of –ΔSM reaches 12.5 J/(kg·K)even at μ0H = 0–2 T in the direction of H parallel to the texture. It is obvious that the 10-m/s-HoCoSi fast quenching belt shows a large low-field magnetocaloric effect and obvious magnetic anisotropy, which is expected to be used to realize the magnetic refrigeration technology of rotating samples.
      PACS:
      75.30.Sg(Magnetocaloric effect, magnetic cooling)
      75.50.Bb(Fe and its alloys)
      75.50.Cc(Other ferromagnetic metals and alloys)
      Corresponding author: Zong Shuo-Tong, zongshuotong@tyust.edu.cn
    • Funds: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2021 L304), the Taiyuan University of Science and Technology Scientific Research Initial Funding (Grant No. 20202022), the Funding for Outstanding Doctoral Research in Jin (Grant No. 20212002), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (Grant No. 2022-KF-32).

    基于磁热效应的磁制冷技术是近年来从基础科学研究逐渐走向应用研究的一种新型制冷技术. 与传统的高能耗、不环保的气体压缩制冷技术相比, 磁制冷技术具有稳定可靠和节能环保等优点, 磁制冷技术已经成为磁功能材料的研究重点之一[1,2]. 其中, 低温磁制冷材料对气体的液化和运输等方面以及具有广泛的应用前景[3,4], 尤其是近年来, 我国在低温物理、医疗卫生和航空航天等领域发展迅速, 而这些高、精、尖领域的发展离不开低温和极低温环境, 因此具有低温相变的磁性材料正被广泛研究[5-9]. 磁制冷技术的发展与应用取决于磁制冷材料性能的不断提高, 为了满足我国日益增长的低温需求, 探索新型低温大磁热效应的材料并分析其物理机制, 这不仅对低温磁制冷技术的应用有重要的实际意义, 而且对凝聚态物理的发展也具有重要的学术意义.

    磁热效应是指在绝热条件下通过施加或撤销外磁场而导致磁性材料温度改变的现象, 是磁制冷技术的基础. 开发良好的制冷工质, 不仅要考虑材料本身的磁性和磁热性能, 还要兼顾磁制冷机的选择. 当前磁制冷技术的设计方案主要分为变场磁制冷技术(通过充磁和退磁实现)和定场旋转磁制冷技术(在恒定磁场下通过旋转样品实现). 过去磁热效应的研究主要致力于寻找一些在磁相转变温度附近通过施加或撤销磁场引起的大磁热效应的材料, 因此变场磁制冷技术需要建立在将磁制冷工质移进或移出磁场的基础上. 2010年, Nikitin等[10]报道了NdCo5单晶具有磁化强度矢量转动引起的各向异性磁热效应, 揭开了旋转磁制冷技术研究的新篇章. 由于旋转磁制冷技术通过采用具有各向异性磁热效应的磁制冷材料在磁场下旋转的, 所以更加简单易行, 小型方便. 随后, 相继在单晶TbVO4[11], Tb0.2Gd0.8[12], CrI3[13], Cr2X2Te6 (X = Si, Ge)[14] 等多个系列样品中观察到大的各向异性磁热效应. 相比单晶昂贵的制作成本和复杂的制备工艺, 利用多晶化合物的择优取向实现大的磁各向异性也十分具有应用前景. 但通常具有大各向异性的多晶化合物较少, 关于多晶化合物各向异性磁热效应的相关报道也为数不多, 在具有低温相变的稀土化合物中具有代表性的是张用TiNiSi型结构的DyNiSi和HoNiSi多晶化合物获得了大的旋转磁热效应[15,16], 此外, 非稀土合金AlFe2B2表现出较大的室温各向异性磁性能[17], 而本文所研究的具有低温相变的HoCoSi化合物与DyNiSi, HoNiSi属于同族化合物, 有望得到较大的各向异性磁热效应, 虽然其良好的低温磁热效应已被报道[18-20], 但是织构和磁各向异性有待进一步研究, 本文将探索具有织构形态的HoCoSi旋甩快淬薄带的磁性和磁各向异性.

    采用电弧熔炼制备多晶HoCoSi铸锭, 各种化学成分的纯度都在99.9%以上, 同时多添加3%的稀土元素, 样品需熔炼3次以上, 然后在 850—900 ℃ 温度下保温7 d后用液氮淬火到室温即可. 将电弧熔炼得到的铸锭分成2.5 g的块状样品, 并分别采用5 m/s, 10 m/s, 15 m/s, 20 m/s的速度甩带, 选取部分合适的细条状样品固定在无磁胶带上, 用4%的稀盐酸轻度酸蚀, 对处理好的条带样品分别进行结构表征. 为了忽略退磁因子对磁性测量造成的影响, 截取相同旋甩速度下不同条带的中间部分并切成正方形, 同时标记好每块正方形样品的质量, 然后用极少量环氧树脂将选中的厚薄均匀的正方形条带粘结为小立方体, 在烤灯下静置一段时间后对其进行磁性测量.

    晶体结构的测量使用了Bruker D2PHASER型X射线衍射仪, 磁性表征采用美国QD公司的SQUID VSM型磁性测量系统.

    图1(a)(b)分别为5 m/s, 10 m/s, 15 m/s, 20 m/s的HoCoSi快淬带在自由面和贴辊面两个表面下的XRD图(f代表自由面, n代表贴辊面). 室温XRD测量表明速冷后的HoCoSi快淬带均为单相正交的TiNiSi型结构(空间群为Pnma62). 由于晶粒从贴辊面向自由面长大时有温度梯度产生, 自由面可以显示出晶粒的择优取向. 甩带速度为5 m/s的快淬带在(211)面呈现择优取向, 随着冷却速度的增大, 晶粒在(211)面来不及长大, 反而在c轴显示出择优取向. 冷却速率的不同导致了晶粒生长的择优取向发生变化, 这可能改变材料特定方向的总磁矩变化.

    图 1 (a)—(d)甩带速度为分别为5 m/s, 10 m/s, 15 m/s, 20 m/s的HoCoSi快淬带在自由面和贴辊面的XRD图(f代表自由面, n代表贴辊面)\r\nFig. 1. (a)−(d) XRD patterns of the HoCoSi fast quenched belts at 5 m/s, 10 m/s, 15 m/s, and 20 m/s on the free surface and the roller surface (f represents the free surface and n represents the roll surface).
    图 1  (a)—(d)甩带速度为分别为5 m/s, 10 m/s, 15 m/s, 20 m/s的HoCoSi快淬带在自由面和贴辊面的XRD图(f代表自由面, n代表贴辊面)
    Fig. 1.  (a)−(d) XRD patterns of the HoCoSi fast quenched belts at 5 m/s, 10 m/s, 15 m/s, and 20 m/s on the free surface and the roller surface (f represents the free surface and n represents the roll surface).

    图2展示了HoCoSi的热磁曲线, 其中, ZFC是在零磁场下从300 K 冷却稳定到2 K, 接着加上0.01 T 的外场升温测量得到, 而FCC曲线则是在测完ZFC 曲线后由降温过程测量得到. 根据磁化强度随温度变化的一阶导数dM/dT的极值可以确定HoCoSi的铁磁-顺磁相变温度TC为13.7 K, 另外Tt = 5.7 K 时观察到ZFC 磁化强度有一个小的突变, 这可能对应于低温下铁磁和螺旋磁性共存消失的临界温度, Tt-TC 之间HoCoSi 为铁磁性, 这里测得的TC 温度与Gupta等[19]用磁测量得到的结果相同, 略低于Leciejewicz 等[20]用中子衍射测量的结果. 由于FFC模式为带场降温得到, 使得铁磁结构得以保持, 磁化强度随温度降低时高于ZFC模式. ZFC 和FCC曲线在TC以上完全重合, 表现出良好的热磁可逆性; 而在TC 以下出现分叉, 这种不可逆性 (TI) 在许多体系中被观察到, 例如自旋玻璃系统、具有竞争磁相互作用的材料和具有高各向异性的铁磁材料[21-23]. 在 FCC 过程中, 样品的初始磁态不同于ZFC, 因为样品经过冷却到TC温度以下, 磁畴已经沿着施加的磁场方向定向移动, 随着畴壁移动, 当温度升高时, FCC 过程中的磁化比 ZFC过程中的磁化更容易, 并且发生不可逆性. 中子衍射和磁测量研究已经确定, 具有TiNiSi 型结构的 RNiSi (R = Tb-Er) 化合物和HoCoSi 化合物在低温下表现出强烈的磁晶各向异性[24,25], 实际上具有高各向异性和低温相变的材料经常表现出大的钉扎效应, 可以认为HoCoSi的TI 归因于畴壁钉扎[23]. 内插图为ZFC模式下磁化率倒数χ1与温度T的关系, 可以看到HoCoSi 在120 K以上温度的顺磁态遵循Curie-Weiss 定律:

    图 2 外场为0.1 T时, 10 m/s甩带速度下的HoCoSi在ZFC和FCC两种模式下的热磁曲线, ZFC的一阶导数曲线显示在下方; 内插图为ZFC模式的1/χ-T 曲线, 实线表示Curie-Weiss拟合\r\nFig. 2. The temperature dependence of magnetization in ZFC and FC mode for HoCoSi of 10 m/s  under the field of 0.01 T, and the corresponding ZFC first derivative curves are shown below. The 1/χ-T curve of ZFC was displayed in the insets. The solid line to inverse susceptibility shows the Curie-Weiss fit.
    图 2  外场为0.1 T时, 10 m/s甩带速度下的HoCoSi在ZFC和FCC两种模式下的热磁曲线, ZFC的一阶导数曲线显示在下方; 内插图为ZFC模式的1/χ-T 曲线, 实线表示Curie-Weiss拟合
    Fig. 2.  The temperature dependence of magnetization in ZFC and FC mode for HoCoSi of 10 m/s under the field of 0.01 T, and the corresponding ZFC first derivative curves are shown below. The 1/χ-T curve of ZFC was displayed in the insets. The solid line to inverse susceptibility shows the Curie-Weiss fit.
    χ1=3kB(Tθp)NMeff2 (1)

    其中, 居里外斯常数C=NMeff23KB, N 为单位质量化合物的磁矩原子数, Meff 为有效磁矩, θp为居里温度, kB 为玻尔兹曼常数. 画出χ1-T曲线, 然后用函数 y = k (x – x0)进行线性拟合, k为拟合斜率, 最终可以求得: x0 = θp, Meff=3kBkN,

    有效磁矩的单位通常换算为玻尔磁子, 即ueff=Meff/uB. 所以根据内插图中红色拟合线与横轴的交点可知顺磁Curie 温度θp 为33 K, 大于TC, 这表明在0.01 T 外磁场下TCθp 之间存在铁磁短程序, 通过对线性部分的拟合可以推导出HoCoSi快淬带的有效磁矩μeff为9.28 μB/Ho, 比Ho离子的理论值(10.6 μB/Ho)偏低, 这是由于居里点以上存在的铁磁团簇使得拟合斜率值偏大.

    图3所示为在5 m/s, 10 m/s, 15 m/s和20 m/s不同甩带速度下, HoCoSi快淬带在T = 5 K和T =17 K两个温度下磁场平行于织构的等温磁化曲线. 通过比较T = 5 K < TCT =17 K > TC这两个温度下的磁化曲线, 发现10 m/s速度的快淬带在T = 5 K的温度下磁化强度最大, 并且与T =17 K时的磁化强度差值最大, 表明10 m/s速度的快淬带在居里温度附近容易产生较大的磁熵变. 内插图显示出10 m/s快淬带横截面有垂直于热流方向的柱状晶粒, 表明晶粒沿着温度梯度生长时表现出明显的择优取向. 这里需要说明的是, 为了忽略退磁因子对磁化强度的影响, 测试所用的样品为几条快淬带重叠而成的小立方体.

    图 3 在5 m/s, 10 m/s, 15 m/s, 20 m/s甩带速度下HoCoSi快淬带的磁场//织构方向的等温磁化曲线 (a) T = 5 K, 插图为10 m/s的快淬带横截面的SEM图; (b) T = 17 K\r\nFig. 3. The magnetization isotherms of 5 m/s, 10 m/s, 15 m/s, 20 m/s HoCoSi taken in the direction of H parallel to textures: (a) T = 5 K, the SEM image of the cross-section of 10 m/s HoCoSi was displayed in the inset; (b) T = 17 K.
    图 3  在5 m/s, 10 m/s, 15 m/s, 20 m/s甩带速度下HoCoSi快淬带的磁场//织构方向的等温磁化曲线 (a) T = 5 K, 插图为10 m/s的快淬带横截面的SEM图; (b) T = 17 K
    Fig. 3.  The magnetization isotherms of 5 m/s, 10 m/s, 15 m/s, 20 m/s HoCoSi taken in the direction of H parallel to textures: (a) T = 5 K, the SEM image of the cross-section of 10 m/s HoCoSi was displayed in the inset; (b) T = 17 K.

    为了确定择优取向对磁化形式的影响, 分别测定了10 m/s-HoCoSi快淬带在磁场//和⊥织构方向时5—40 K的等温磁化曲线, 如图4(a)(b)所示. TC温度以下的等温磁化曲线在低场下磁矩已经呈现饱和趋势, 由MH的最大值确定的磁跃迁临界场为0.5 T, 而在垂直磁场时, 磁矩随磁场的变化几乎成线性关系. 虽然磁矩在高场下均未达到饱和, 但是可以看出形成织构的方向磁矩接近平行排列, 容易产生低场大磁热效应. 图4(c)T = 5 K, μ0H = 2 T下的转角磁化曲线, 很明显, 磁矩最小值接近于垂直织构方向, 磁矩最大值接近于平行织构方向, 且平行方向的磁矩约为垂直方向的2倍, 毫无疑问, 10 m/s甩带速度的HoCoSi织构导致了巨大的磁各向异性.

    图 4 甩带速度10 m/s时HoCoSi快淬带在磁场平行 (a)和垂直(b)织构方向的等温磁化曲线; (c) T = 5 K, μ0H = 2 T下的转角磁化曲线\r\nFig. 4. The magnetization isotherms of 10 m/s HoCoSi taken in the direction of H parallel to textures (a) and H perpendicular to textures (b); (c) the magnetization as a function of rotation angle at 5 K in the magnetic field of 2 T.
    图 4  甩带速度10 m/s时HoCoSi快淬带在磁场平行 (a)和垂直(b)织构方向的等温磁化曲线; (c) T = 5 K, μ0H = 2 T下的转角磁化曲线
    Fig. 4.  The magnetization isotherms of 10 m/s HoCoSi taken in the direction of H parallel to textures (a) and H perpendicular to textures (b); (c) the magnetization as a function of rotation angle at 5 K in the magnetic field of 2 T.

    磁热效应是磁性材料的内禀属性, 可以用磁熵变ΔSM表征. 基于图4中的等温磁化曲线, 并利用Maxwell关系ΔSM=H0M(H,T)TdH可分别得到10 m/s甩带速度的HoCoSi快淬带在磁场平行和垂直织构方向的ΔSM-T关系, 如图5所示. 在μ0H = 0—5 T的磁场变化范围内, 磁场//织构方向的最大磁熵变值ΔSM达到22 J/(kg·K), 接近于Gupta等[19]的报道, 即使在μ0H = 0—2 T时, –ΔSM 也达到12.5 J/(kg·K), 这是由于形成织构的方向接近于磁化的易轴. 而在磁场垂直织构方向, 在外场0—5 T变化范围内, 熵变只达12 J/(kg·K), 小于磁场平行织构方向时用永磁体即可提供的磁场变化范围(0—2 T)内的磁熵变值. TC附近的 –ΔSM 峰形随着磁场增大向高温不对称展宽, 这可能是由于TC温度以上存在短程 FM 相互作用. 此外, 磁场⊥织构方向时, 3 T以上高场下的ΔSM-T曲线出现双峰, 分别位于TC = 13.7 K和Tm = 16 K. 由于磁熵变峰通常对应变磁转变的临界点, 为了验证Tm 处是否发生变磁转变, 将图4(b)中的MH曲线转换为对应的MT曲线, 如图6(a)所示. 然而除了TC 温度随磁场的增大向高温移动外, 没有发现其他异常, 所以Tm = 16 K处并未发生相变, 此处磁熵变峰可能是由于磁场⊥织构方向时, 磁化强度随高场变化的响应更加复杂, 也可能是不同的磁性竞争所致. 将图4(b)相变温度附近的磁化曲线局部放大, 如图6(b), 发现在约Tm =16 K, μ0H = 3 T处, 磁化强度的斜率变化先减小随后略有增大, 然后再减小, 从而导致了高场下双峰的出现. 制冷量 (RC) 和相对制冷功率 (RCP)分别是衡量制冷能力的另外两个重要参数, 可用(2)和(3)式表征:

    图 5 10 m/s的HoCoSi快淬带的$\Delta {S}_{\mathrm{M}}\text-T$变化曲线 (a)磁场平行⊥织构方向; (b)磁场垂直织构方向; 内插图为制冷能力RC随外场变化关系\r\nFig. 5. The$\Delta {S}_{\mathrm{M}}\text-T$ curves of 10 m/s HoCoSi: (a) In the direction of H parallel to textures; (b) in the direction of H perpendicular to textures. The corresponding magnetic refrigeration capacity RC were showed in the insets.
    图 5  10 m/s的HoCoSi快淬带的ΔSM-T变化曲线 (a)磁场平行⊥织构方向; (b)磁场垂直织构方向; 内插图为制冷能力RC随外场变化关系
    Fig. 5.  TheΔSM-T curves of 10 m/s HoCoSi: (a) In the direction of H parallel to textures; (b) in the direction of H perpendicular to textures. The corresponding magnetic refrigeration capacity RC were showed in the insets.
    图 6 10 m/s下HoCoSi快淬带在磁场垂直织构方向的M-T曲线(a)和M-H曲线放大图(b)\r\nFig. 6. The curves of M-T (a) and M-H curve enlarged view(b)of 10 m/s HoCoSi taken in the direction of H perpendicular to the texture.
    图 6  10 m/s下HoCoSi快淬带在磁场垂直织构方向的M-T曲线(a)和M-H曲线放大图(b)
    Fig. 6.  The curves of M-T (a) and M-H curve enlarged view(b)of 10 m/s HoCoSi taken in the direction of H perpendicular to the texture.
    RC=T2T1|ΔSM(T,H)|dT (2)
    RCP=|ΔSmaxM|×δTFWHM (3)

    其中, T1T2分别表示曲线两侧半高宽的温度, δTFWHM = T2 T1, 磁场平行和垂直织构方向的的制冷能力RC分别表示在对应的内插图中, 在外场μ0H = 0—5 T的磁场变化范围内, 二者的制冷能力RC (RCP) 分别为360 (393.8) J/kg和160 (254.4) J/kg, 同时RC值随外场的变化近乎呈线性关系. 综上分析, 无论从磁化曲线, 磁熵变大小还是制冷能力我们都发现材料明显的磁各向异性, 特别是在磁场平行织构方向, HoCoSi具有更好的磁热性能. 通过对比甩带速度为10 m/s的HoCoSi化合物的磁热参数和一些最近报道的有前景的低温磁制冷材料(表1)可知, 甩带速度为10 m/s的HoCoSi材料在磁场平行织构方向具有优越的磁熵变大小和磁制冷能力.

    表 1  10 m/s下HoCoSi化合物的磁热参数和一些最近报道的 Δμ0H = 5 T 的有前景的低温磁制冷材料
    Table 1.  Magnetocaloric parameters for the 10 m/s HoCoSi compounds and some recently reported promising cryogenic magnetic refrigerants for Δμ0H = 5 T.
    CompoundTM /K|ΔSmaxM|/(J·(kg·K)–1)δTFWHM/KRCP/(J·kg–1)Refs.
    HoCoSi(parallel)13.72217.9393.8This study
    HoCoSi(perpendicular)13.71221.2266.4This study
    Er2Ni1.5Ga2.54.115.718.3254.4[26]
    PrFe2Si28.56.417~100.8[27]
    NdFe2Si215.512.411~116.3[27]
    GdFe2Si28.623.259276.56[28]
    Gd2ZnMnO66.415.214.9226.2[29]
    Ho2ZnMnO66.813.218.7246.5[29]
    Ho2CrMnO66.18.822.0193.7[30]
    Er2CrMnO65.210.314.2146.0[30]
    Er2CuMnO63.69.919.7195.9[31]
    下载: 导出CSV 
    | 显示表格

    本文研究了快淬带HoCoSi化合物的磁性、磁热效应及磁各向异性. 发现HoCoSi在TC = 13.7 K发生了铁磁到顺磁的二级相变, 铁磁和螺旋磁性共存消失的温度为Tt = 5.7 K. 不同快淬速度下的HoCoSi薄带有不同的择优取向, 并直接影响其磁性和磁热效应. 其中, 10 m/s下的HoCoSi快淬带显示出更好的磁热效应潜质, 并通过测定其在磁场//和⊥织构方向时居里温度附近的等温磁化曲线, 得出了对应的磁熵变和磁制冷能力. 在μ0H = 0—5 T的磁场变化时, 磁场//和⊥织构方向的最大磁熵变值–ΔSM分别为22 J/(kg·K)和12 J/(kg·K), 制冷能力RC (RCP) 分别为360 (393.8) J/kg和160 (254.4) J/kg. 充分说明甩带速度为10 m/s的HoCoSi材料在磁场平行织构方向具有优越的磁熵变大小和磁制冷能力, 且表现出明显的各向异性磁热效应, 有望实现旋转样品磁制冷技术.

    [1]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [2]

    Franco V, Blázquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Sci. 42 305Google Scholar

    [3]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401Google Scholar

    [4]

    Gschneidner K A Jr, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504Google Scholar

    [6]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 王军民 2016 物理学报 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [7]

    Li L W, Yan M 2022 JMST

    [8]

    Zhang Y K 2019 J. Alloys Compd. 787 1173Google Scholar

    [9]

    Li L W, Yan M 2020 J. Alloys Compd. 823 153810Google Scholar

    [10]

    Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G, Ivanova T I 2010 Phys. Rev. Lett. 105 137205Google Scholar

    [11]

    Balli M, Mansouri S, Dimitrov D Z, Fournier P, Jandl S, Juang J Y 2020 Phys. Rev. Mater. 4 114411Google Scholar

    [12]

    Nikitin S A, Ivanova T I, Zvonov A I, Koshkid'ko Y S, Ćwik J, Rogacki K 2018 Acta Mater. 161 331Google Scholar

    [13]

    Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418Google Scholar

    [14]

    Liu Y, Petrovic C 2019 Phys Rev. Mater. 3 014001Google Scholar

    [15]

    Zhang H, Li Y V, Liu E K, Ke Y J 2015 Sci. Rep. 5 11929Google Scholar

    [16]

    Zhang H, Xing C F, Zhou H, Zheng X Q, Miao X F, He L H, Chen J, Lu H L, Liu E K, Han W T, Zhang H G, Wang Y X, Long Y, Eijk L V, Brück E 2020 Acta Mater. 193 2020

    [17]

    Barua R, Lejeune B T, Ke L, Hadjipanayis G, Levin E M, McCallum R W, Kramer M J, Lewis L H 2018 J. Alloys. Compd. 745 505Google Scholar

    [18]

    Welter R, Venturini G, Ressouche E, Malaman B 1994 J. Alloys Compd. 210 279Google Scholar

    [19]

    Gupta S, Suresh K G 2013 Mater. Lett. 113 195Google Scholar

    [20]

    Leciejewicz J, Stusser N, Kolenda M, Szytuta A, Zygmunt A 1996 J. Alloys Compd. 240 164Google Scholar

    [21]

    Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar

    [22]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 2009 J. Appl. Phys. 105 023901Google Scholar

    [23]

    Wang J L, Marquina C, Ibarra M R, Wu G H 2006 Phys. Rev. B 73 094436

    [24]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 1999 J. Magn. Magn. Mater. 191 122Google Scholar

    [25]

    许志一 2012 博士学位论文 (北京: 中国科学院物理研究所)

    Xu Z Y 2012 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)

    [26]

    Guo D, Zhang Y K, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Alloy. Compd. 830 154666Google Scholar

    [27]

    Ma Y, Dong X, Qi Y, 2019 J. Magn. Magn. Mater. 471 25Google Scholar

    [28]

    Zhang Y, Zhu J, Li S, Zhang Z Q, Wang J, Ren Z M 2022 Sci. China Mater. 65 1345Google Scholar

    [29]

    Li L W, Xu P, Ye S K, Li Y, Liu G D, Huo D X, Yan M 2020 Acta Mater. 194 354Google Scholar

    [30]

    Wu B B, Guo D, Wang Y M, Zhang Y K 2020 Ceram. Int. 46 11988Google Scholar

    [31]

    Zhang Y K, Zhang B, Li S, Zhu J, Wu B B, Wang J, Ren Z M 2021 Ceram. Int. 47 18205Google Scholar

  • 图 1  (a)—(d)甩带速度为分别为5 m/s, 10 m/s, 15 m/s, 20 m/s的HoCoSi快淬带在自由面和贴辊面的XRD图(f代表自由面, n代表贴辊面)

    Figure 1.  (a)−(d) XRD patterns of the HoCoSi fast quenched belts at 5 m/s, 10 m/s, 15 m/s, and 20 m/s on the free surface and the roller surface (f represents the free surface and n represents the roll surface).

    图 2  外场为0.1 T时, 10 m/s甩带速度下的HoCoSi在ZFC和FCC两种模式下的热磁曲线, ZFC的一阶导数曲线显示在下方; 内插图为ZFC模式的1/χ-T 曲线, 实线表示Curie-Weiss拟合

    Figure 2.  The temperature dependence of magnetization in ZFC and FC mode for HoCoSi of 10 m/s under the field of 0.01 T, and the corresponding ZFC first derivative curves are shown below. The 1/χ-T curve of ZFC was displayed in the insets. The solid line to inverse susceptibility shows the Curie-Weiss fit.

    图 3  在5 m/s, 10 m/s, 15 m/s, 20 m/s甩带速度下HoCoSi快淬带的磁场//织构方向的等温磁化曲线 (a) T = 5 K, 插图为10 m/s的快淬带横截面的SEM图; (b) T = 17 K

    Figure 3.  The magnetization isotherms of 5 m/s, 10 m/s, 15 m/s, 20 m/s HoCoSi taken in the direction of H parallel to textures: (a) T = 5 K, the SEM image of the cross-section of 10 m/s HoCoSi was displayed in the inset; (b) T = 17 K.

    图 4  甩带速度10 m/s时HoCoSi快淬带在磁场平行 (a)和垂直(b)织构方向的等温磁化曲线; (c) T = 5 K, μ0H = 2 T下的转角磁化曲线

    Figure 4.  The magnetization isotherms of 10 m/s HoCoSi taken in the direction of H parallel to textures (a) and H perpendicular to textures (b); (c) the magnetization as a function of rotation angle at 5 K in the magnetic field of 2 T.

    图 5  10 m/s的HoCoSi快淬带的ΔSM-T变化曲线 (a)磁场平行⊥织构方向; (b)磁场垂直织构方向; 内插图为制冷能力RC随外场变化关系

    Figure 5.  TheΔSM-T curves of 10 m/s HoCoSi: (a) In the direction of H parallel to textures; (b) in the direction of H perpendicular to textures. The corresponding magnetic refrigeration capacity RC were showed in the insets.

    图 6  10 m/s下HoCoSi快淬带在磁场垂直织构方向的M-T曲线(a)和M-H曲线放大图(b)

    Figure 6.  The curves of M-T (a) and M-H curve enlarged view(b)of 10 m/s HoCoSi taken in the direction of H perpendicular to the texture.

    表 1  10 m/s下HoCoSi化合物的磁热参数和一些最近报道的 Δμ0H = 5 T 的有前景的低温磁制冷材料

    Table 1.  Magnetocaloric parameters for the 10 m/s HoCoSi compounds and some recently reported promising cryogenic magnetic refrigerants for Δμ0H = 5 T.

    CompoundTM /K|ΔSmaxM|/(J·(kg·K)–1)δTFWHM/KRCP/(J·kg–1)Refs.
    HoCoSi(parallel)13.72217.9393.8This study
    HoCoSi(perpendicular)13.71221.2266.4This study
    Er2Ni1.5Ga2.54.115.718.3254.4[26]
    PrFe2Si28.56.417~100.8[27]
    NdFe2Si215.512.411~116.3[27]
    GdFe2Si28.623.259276.56[28]
    Gd2ZnMnO66.415.214.9226.2[29]
    Ho2ZnMnO66.813.218.7246.5[29]
    Ho2CrMnO66.18.822.0193.7[30]
    Er2CrMnO65.210.314.2146.0[30]
    Er2CuMnO63.69.919.7195.9[31]
    DownLoad: CSV
  • [1]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [2]

    Franco V, Blázquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Sci. 42 305Google Scholar

    [3]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401Google Scholar

    [4]

    Gschneidner K A Jr, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504Google Scholar

    [6]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 王军民 2016 物理学报 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [7]

    Li L W, Yan M 2022 JMST

    [8]

    Zhang Y K 2019 J. Alloys Compd. 787 1173Google Scholar

    [9]

    Li L W, Yan M 2020 J. Alloys Compd. 823 153810Google Scholar

    [10]

    Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G, Ivanova T I 2010 Phys. Rev. Lett. 105 137205Google Scholar

    [11]

    Balli M, Mansouri S, Dimitrov D Z, Fournier P, Jandl S, Juang J Y 2020 Phys. Rev. Mater. 4 114411Google Scholar

    [12]

    Nikitin S A, Ivanova T I, Zvonov A I, Koshkid'ko Y S, Ćwik J, Rogacki K 2018 Acta Mater. 161 331Google Scholar

    [13]

    Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418Google Scholar

    [14]

    Liu Y, Petrovic C 2019 Phys Rev. Mater. 3 014001Google Scholar

    [15]

    Zhang H, Li Y V, Liu E K, Ke Y J 2015 Sci. Rep. 5 11929Google Scholar

    [16]

    Zhang H, Xing C F, Zhou H, Zheng X Q, Miao X F, He L H, Chen J, Lu H L, Liu E K, Han W T, Zhang H G, Wang Y X, Long Y, Eijk L V, Brück E 2020 Acta Mater. 193 2020

    [17]

    Barua R, Lejeune B T, Ke L, Hadjipanayis G, Levin E M, McCallum R W, Kramer M J, Lewis L H 2018 J. Alloys. Compd. 745 505Google Scholar

    [18]

    Welter R, Venturini G, Ressouche E, Malaman B 1994 J. Alloys Compd. 210 279Google Scholar

    [19]

    Gupta S, Suresh K G 2013 Mater. Lett. 113 195Google Scholar

    [20]

    Leciejewicz J, Stusser N, Kolenda M, Szytuta A, Zygmunt A 1996 J. Alloys Compd. 240 164Google Scholar

    [21]

    Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar

    [22]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 2009 J. Appl. Phys. 105 023901Google Scholar

    [23]

    Wang J L, Marquina C, Ibarra M R, Wu G H 2006 Phys. Rev. B 73 094436

    [24]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 1999 J. Magn. Magn. Mater. 191 122Google Scholar

    [25]

    许志一 2012 博士学位论文 (北京: 中国科学院物理研究所)

    Xu Z Y 2012 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)

    [26]

    Guo D, Zhang Y K, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Alloy. Compd. 830 154666Google Scholar

    [27]

    Ma Y, Dong X, Qi Y, 2019 J. Magn. Magn. Mater. 471 25Google Scholar

    [28]

    Zhang Y, Zhu J, Li S, Zhang Z Q, Wang J, Ren Z M 2022 Sci. China Mater. 65 1345Google Scholar

    [29]

    Li L W, Xu P, Ye S K, Li Y, Liu G D, Huo D X, Yan M 2020 Acta Mater. 194 354Google Scholar

    [30]

    Wu B B, Guo D, Wang Y M, Zhang Y K 2020 Ceram. Int. 46 11988Google Scholar

    [31]

    Zhang Y K, Zhang B, Li S, Zhu J, Wu B B, Wang J, Ren Z M 2021 Ceram. Int. 47 18205Google Scholar

  • [1] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [3] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [4] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [5] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [6] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [7] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [8] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [9] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [10] Sun Xiao-Dong, Xu Bao, Wu Hong-Ye, Cao Feng-Ze, Zhao Jian-Jun, Lu Yi. Magnetic entropy change and electrical transport properties of rare earth Tb doped manganites La4/3Sr5/3Mn2O7. Acta Physica Sinica, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [11] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [12] Dong Xue, Zhang Guo-Ying, Xia Wang-Suo, Huang Yi-Jia, Hu Feng. Study on the magnetic and magnetocaloric effects of Dy3Al5O12. Acta Physica Sinica, 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [13] Chen Xiang, Chen Yun-Gui, Tang Yong-Bo, Xiao Ding-Quan, Li Dao-Hua. Basic problem in the first-order phase transition magnetic refrigeration material. Acta Physica Sinica, 2014, 63(14): 147502. doi: 10.7498/aps.63.147502
    [14] Huang Yi-Jia, Zhang Guo-Ying, Hu Feng, Xia Wang-Suo, Liu Hai-Shun. Investigation on the magnetic and magnetocaloric properties of PrNi2. Acta Physica Sinica, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [15] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [16] Cai Pei-Yang, Feng Shang-Shen, Chen Wei-Ping, Xue Shuang-Xi, Li Zhi-Gang, Zhou Ying, Wang Hai-Bo, Wang Gu-Ping. Magnetic entropy change and magnetic-field-induced strain in polycrystalline Ni47Mn32Ga21 alloy. Acta Physica Sinica, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [17] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [18] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [19] Shen Jun, Li Yang-Xian, Hu Feng-Xia, Wang Guang-Jun, Zhang Shao-Ying. Magnetic properties and magnetic entropy change of Ce2Fe16Al near Curie temperature. Acta Physica Sinica, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
Metrics
  • Abstract views:  4532
  • PDF Downloads:  71
Publishing process
  • Received Date:  13 April 2022
  • Accepted Date:  28 June 2022
  • Available Online:  10 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回