Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources

Ma Yong-Jun Li Rui-Xuan Li Kui Zhang Guang-Yin Niu Jin Ma Yun-Feng Ke Chang-Jun Bao Jie Chen Ying-Shuang Lü Chun Li Jie Fan Zhong-Wei Zhang Xiao-Shi

Citation:

Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources

Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi
PDF
HTML
Get Citation
  • Coherent diffractive imaging (CDI) using ultra-short wavelength light source has become an three-dimensional(3D) nanoimaging technique. In CDI, a target sample is first illuminated by a coherent EUV and soft X-ray light, then the diffraction pattern is recorded by using a charge coupled device (CCD), and finally the image of the sample is obtained based on the pattern by using a phase retrieval algorithm. Of the many currently available coherent EUV and soft X-ray light sources, the high-order harmonic generation (HHG) is the simplest in structure, the lowest in cost, and most compact in size. Therefore, it has become the most promising light source for CDI. Through years of development, HHG based CDI technique(HHG-CDI) has become an outstanding 3D nano-imaging technique with the advantages of no aberration, no damage, and no contact either, and it also possesses the extra-capabilities of probing the dynamics, chemical composition and quantum information in various semiconductor and quantum devices. We believe that the HHG-CDI will soon become a generic nano-imaging tool that can complement or even replace the matured nanoimaging techniques, such as atomic force, near field, X-ray, electron, or scanning tunneling microscopes.
      Corresponding author: Zhang Xiao-Shi, zhangxs@aircas.ac.cn
    • Funds: Project supported by the Short Pulse Laser Technology Team of Condition Guarantee and Finance Bureau, Chinese Academy of Sciences(Grant No. GJJSTD20200009), the National Key R&D Program of China (Grant No. 2021YFB3602600), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62005291), and the Chinese Academy of Science Pioneer Hundred Talents Program (Grant No. 2018-131-S).
    [1]

    Shadfan A, Pawlowski M, Wang Y, Subramanian K, Gabay I, Ben-Yakar A, Tkaczyk T 2016 Opt. Eng. 55 025107Google Scholar

    [2]

    Parimi P V, Lu W T T, Vodo P, Sridhar S 2003 Nature 426 404Google Scholar

    [3]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [4]

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E 1986 Biophys. J. 49 269Google Scholar

    [5]

    Wokosin D L, Centonze V E, Crittenden S, White J 2015 Bioimaging 4 208

    [6]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [7]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793Google Scholar

    [8]

    Hunt B R, Overman T L, Gough P 1998 Opt. Lett. 23 1123Google Scholar

    [9]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [10]

    Seibert M M, Ekeberg T, Maia F R, Svenda M, Andreasson J, Jonsson O, Odic D, Iwan B, Rocker A, Westphal D, Hantke M, DePonte D P, Barty A, Schulz J, Gumprecht L, Coppola N, Aquila A, Liang M, White T A, Martin A, Caleman C, Stern S, Abergel C, Seltzer V, Claverie J M, Bostedt C, Bozek J D, Boutet S, Miahnahri A A, Messerschmidt M, Krzywinski J, Williams G, Hodgson K O, Bogan M J, Hampton C Y, Sierra R G, Starodub D, Andersson I, Bajt S, Barthelmess M, Spence J C, Fromme P, Weierstall U, Kirian R, Hunter M, Doak R B, Marchesini S, Hau-Riege S P, Frank M, Shoeman R L, Lomb L, Epp S W, Hartmann R, Rolles D, Rudenko A, Schmidt C, Foucar L, Kimmel N, Holl P, Rudek B, Erk B, Homke A, Reich C, Pietschner D, Weidenspointner G, Struder L, Hauser G, Gorke H, Ullrich J, Schlichting I, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel K U, Andritschke R, Schroter C D, Krasniqi F, Bott M, Schorb S, Rupp D, Adolph M, Gorkhover T, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Chapman H N, Hajdu J 2011 Nature 470 78Google Scholar

    [11]

    Ekeberg T E, Svenda M, Abergel C, Maia F R N C, Seltzer V, Claverie J-M, Hantke M, Joensson O, Nettelblad C, van der Schot G, Liang M, DePonte D P, Barty A, Seibert M M, Iwan B, Andersson I, Loh N D, Martin A V, Chapman H, Bostedt C, Bozek J D, Ferguson K R, Krzywinski J, Epp S W, Rolles D, Rudenko A, Hartmann R, Kimmel N, Hajdu J 2015 Phys. Rev. Lett. 114 098102Google Scholar

    [12]

    Sandberg R L, Paul A, Raymondson D A, Haedrich S, Gaudiosi D M, Holtsnider J, Tobey R a I, Cohen O, Murnane M M, Kapteyn H C, Song C, Miao J, Liu Y, Salmassi F 2007 Phys. Rev. Lett. 99 098103Google Scholar

    [13]

    Iii C D, Rundquist A R, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [14]

    Gardner D F, Zhang B, Seaberg M D, Martin L S, Adams D E, Salmassi F, Gullikson E, Kapteyn H, Murnane M 2012 Opt. Express 20 19050Google Scholar

    [15]

    Seaberg M D, Adams D E, Zhang B, Murnane M M, Kapteyn H C 2012 Conference on Lasers and Electro-Optics San Jose, California, USA, May 06 2012 p CF1 L. 8

    [16]

    Seaberg M D, Zhang B, Gardner D F, Shanblatt E R, Murnane M M, Kapteyn H C, Adams D E 2014 Optica 1 39Google Scholar

    [17]

    Abbey B, Nugent K A, Williams G J, Clark J N, Peele A G, Pfeifer M A, de Jonge M, McNulty I 2008 Nat. Phys. 4 394Google Scholar

    [18]

    Zhang B, Seaberg M D, Adams D E, Gardner D F, Shanblatt E R, Shaw J M, Chao W, Gullikson E M, Salmassi F, Kapteyn H C, Murnane M M 2013 Opt. Express 21 21970Google Scholar

    [19]

    Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X, Galloway B R, Porter C L, Karl R, Jr., Bevis C, Adams D E, Kapteyn H C, Murnane M, Mancini G F 2017 Nat. Photonics 11 259Google Scholar

    [20]

    Mancini G F, Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X, Galloway B R, Porter C R, Karl R, Bevis C, Kapteyn H, Murnane M M, Adams D E 2016 International Conference on Ultrafast Phenomena Santa Fe, New Mexico, USA, July 17 2016 pUTu2 B. 2

    [21]

    Porter C L, Tanksalvala M, Gerrity M, Miley G, Zhang X, Bevis C, Shanblatt E, Karl R, Jr., Murnane M M, Adams D E, Kapteyn H C 2017 Optica 4 1552Google Scholar

    [22]

    Whitehead L W, Williams G J, Quiney H M, Vine D J, Dilanian R A, Flewett S, Nugent K A, Peele A G, Balaur E, McNulty I 2009 Phys. Rev. Lett. 103 243902Google Scholar

    [23]

    Thibault P, Menzel A 2013 Nature 494 68Google Scholar

    [24]

    Karl R, Mancini G, Gardner D, Knobloch J, Frazer T, Hernandez-Charpak J N, Mayor B A, Shanblatt E, Tanksalvala M, Porter C, Bevis C, Adams D, Kapteyn H, Murnane M M 2017 Imaging and Applied Optics San Francisco, California, USA, June 26, 2017 pCW1 B. 2

    [25]

    Karl R, Mancini G, Gardner D, Shanblatt E, Knobloch J, Frazer T, Hernandez-Charpak J N, Mayor B A, Tanksalvala M, Porter C, Bevis C, Adams D, Kapteyn H, Murnane M 2018 High-Brightness Sources and Light-driven Interactions Strasbourg, France, March 26, 2018 pET2B.6

    [26]

    Pan X, Liu C, Zhu J 2013 Appl. Phys. Lett. 103 171105Google Scholar

    [27]

    Sidorenko P, Cohen O 2016 Optica 3 9Google Scholar

    [28]

    Sidorenko P, Lahav O, Cohen O 2017 Opt. Express 25 10997Google Scholar

    [29]

    Wengrowicz O, Peleg O, Loevsky B, Chen B K, Haham G I, Sainadh U S, Cohen O 2019 Opt. Express 27 24568Google Scholar

    [30]

    Tanksalvala M, Porter C L, Esashi Y, Wang B, Jenkins N W, Zhang Z, Miley G P, Knobloch J L, McBennett B, Horiguchi N, Yazdi S, Zhou J, Jacobs M N, Bevis C S, Karl R M, Jr., Johnsen P, Ren D, Waller L, Adams D E, Cousin S L, Liao C T, Miao J, Gerrity M, Kapteyn H C, Murnane M M 2021 Sci. Adv. 7 9667Google Scholar

    [31]

    Le H V, Dinh K B, Hannaford P, Van Dao L 2014 J. Appl. Phys. 116 173104

    [32]

    Karl R M, Mancini G F, Knobloch J L, Frazer T D, Hernandez-Charpak J N, Abad B, Gardner D F, Shanblatt E R, Tanksalvala M, Porter C L, Bevis C S, Adams D E, Kapteyn H C, Murnane M M 2018 Sci. Adv. 4 eaau4295Google Scholar

    [33]

    Antunez P D, Bishop D M, Luo Y, Haight R 2017 Nat. Energy 2

    [34]

    Frazer T D, Knobloch J L, Hernández-Charpak J N, Hoogeboom-Pot K M, Nardi D, Yazdi S, Chao W, Anderson E H, Tripp M K, King S W, Kapteyn H C, Murnane M M, Abad B 2020 Phys. Rev. Mater. 4 073603Google Scholar

    [35]

    King S W, Simka H, Herr D, Akinaga H, Garner M 2013 APL Mater. 1 040701Google Scholar

    [36]

    Mochi I, Fernandez S, Nebling R, Locans U, Helfenstein P, Rajeev R, Dejkameh A, Kazazis D, Tseng L T, Ekinci Y 2019 Amplitude and Phase Defect Inspection on EUV Reticles Using RESCAN p29

    [37]

    Moler K A 2017 Nat. Mater. 16 1049Google Scholar

    [38]

    Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J 2021 PhotoniX 2 4Google Scholar

    [39]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [40]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar

    [41]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [42]

    Ammosov M V, Delone N B, Krainov V P 1986 Proceedings of SPIE Quebec, Canada, October 21, 1986 p138

    [43]

    盛政明编 2003 强场激光物理研究前沿(上海: 上海交通大学出版社) 第5, 57页

    Sheng Z M 2014 Advances in High Field Laser Physics (Shanghai: Shanghai Jiao Tong University Press) pp5, 57 (in Chinese)

    [44]

    Zhang X, Libertun A R, Paul A, Gagnon E, Backus S, Christov I P, Murnane M M, Kapteyn H C, Bartels R A, Liu Y, Attwood D T 2004 Opt. Lett. 29 1357Google Scholar

    [45]

    Rundquist A, Durfee C G, Chang Z H, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [46]

    Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y W, Attwood D, Jacobsen C 2002 Science 297 376

    [47]

    Zhang X S, Lytle A, Popmintchev T, Paul A, Wagner N, Murnane M, Kapteyn H, Christov I P 2005 Opt. Lett. 30 1971Google Scholar

    [48]

    Lytle A L, Zhang X, Arpin P, Cohen O, Murnane M M, Kapteyn H C, Ieee 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference San Jose, CA, USA, May 4–9 p1984

    [49]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381

    [50]

    Martin G, Tobias H, Robert K, Alexander K, Chang L, Ziyao W, Mathias L, Christian G, Cesar J, Jose A L, Axel S, Rodrigo A C, Jan R, Jens L Proc. SPIE

    [51]

    Feehan J S, Price J H V, Butcher T J, Brocklesby W S, Frey J G, Richardson D J 2017 Appl. Phys. B 123 43

    [52]

    Hoppe W 1969 Acta Crystallogr. Sect. A 25 508Google Scholar

    [53]

    Robinson I K, Vartanyants I A, Williams G J, Pfeifer M A, Pitney J A 2001 Phys. Rev. Lett. 87 195505Google Scholar

    [54]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795Google Scholar

    [55]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506Google Scholar

    [56]

    Roy S, Parks D, Seu K A, Su R, Turner J J, Chao W, Anderson E H, Cabrini S, Kevan S D 2011 Nat. Photonics 5 243Google Scholar

    [57]

    Bates R H T 1982 Phys. Rep. 90 203Google Scholar

    [58]

    Miao J, Sayre D, Chapman H N 1998 J. Opt. Soc. Am. A 15 1662Google Scholar

    [59]

    Gerchberg R W, Saxton, W. O. 1972 Optik 35 237

    [60]

    Burge R E 1981 Scanning 4 159

    [61]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [62]

    Streibl N 1984 Opt. Commun. 49 6Google Scholar

    [63]

    Teague M R 1983 J. Opt. Soc. Am. A 73 1434Google Scholar

    [64]

    Sayre D 1952 Acta Crystallogr. 5 843

    [65]

    Hoppe W 1969 Acta Crystallogr. Sect. A 25 495Google Scholar

    [66]

    Hoppe W, Strube G 1969 Acta Crystallogr. Sect. A 25 502Google Scholar

    [67]

    Hegerl R, Hoppe W 1972 Proceedings of the 5th European Congress on Electron Microscopy p628

    [68]

    Marchesini S 2007 Rev. Sci. Instrum. 78 011301Google Scholar

    [69]

    Bauschke H H, Combettes P L, Luke D R 2002 J. Opt. Soc. Am. A 19 1334Google Scholar

    [70]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

    [71]

    Pan X C, Liu C, Tao H, Liu H G, Zhu J Q 2020 Acta Optica Sinica 40 111010Google Scholar

    [72]

    Maiden A M, Humphry M J, Rodenburg J M 2012 J. Opt. Soc. Am. A 29 1606

    [73]

    Zhang F, Peterson I, Vila-Comamala J, Berenguer A D F, Bean R, Chen B, Menzel A, Robinson I K, Rodenburg J M 2013 Opt. Express 21 13592Google Scholar

    [74]

    Zheng G, Horstmeyer R, Yang C 2015 Nat. Photonics 9 621Google Scholar

    [75]

    Shanblatt E R, Porter C L, Gardner D F, Mancini G F, Karl R M, Tanksalvala M,Bevis C S, Vartanian V H, Kapteyn H C, Adams D E 2016 Computational Optical Sensing and Imaging 2016 CT4C.1

    [76]

    Raines K S, Salha S, Sandberg R L, Jiang H, Rodriguez J A, Fahimian B P,Kapteyn H C, Du J, Miao J 2010 Nature 463 214

    [77]

    Miao J, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [78]

    Spence J C H, Weierstall U, Howells M 2004 Ultramicroscopy 101 149Google Scholar

    [79]

    Abbey B, Whitehead L W, Quiney H M, Vine D J, Cadenazzi G A, Henderson C A, Nugent K A, Balaur E, Putkunz C T, Peele A G, Williams G J, McNulty I 2011 Nat. Photonics 5 420Google Scholar

    [80]

    Batey D J, Claus D, Rodenburg J M 2014 Ultramicroscopy 138 13Google Scholar

    [81]

    Williams G J, Quiney H M, Peele A G, Nugent K A 2007 Phys. Rev. B 75 4102

    [82]

    Chen B, Dilanian R A, Teichmann S, Abbey B, Peele A, Williams G J, Hannaford P, Dao L V, Quiney H M, Nugent K A 2009 Phys. Rev. A 79 023809Google Scholar

    [83]

    Zhang B, Gardner D F, Seaberg M H, Shanblatt E R, Porter C L, Karl R, Mancuso C A, Kapteyn H C, Murnane M M, Adams D E 2016 Opt. Express 24 18745Google Scholar

    [84]

    Bevis C, Karl R, Reichanadter J, Gardner D F, Porter C, Shanblatt E, Tanksalvala M, Mancini G F, Kapteyn H, Murnane M, Adams D 2018 Ultramicroscopy 184 164Google Scholar

    [85]

    Karl R, Bevis C, Lopez-Rios R, Reichanadter J, Gardner D, Porter C, Shanblatt E, Tanksalvala M, Mancini G F, Murnane M, Kapteyn H, Adams D 2015 Opt. Express 23 30250Google Scholar

    [86]

    Rönsch-Schulenburg J, Faatz B, Honkavaara K, Kuhlmann M, Schreiber S, Treusch R, Vogt M 2017 J. Phys. Conf. Ser. 874 012023Google Scholar

    [87]

    Ellis J L, Dorney K M, Hickstein D D, Brooks N J, Gentry C, Hernández-García C, Zusin D, Shaw J M, Nguyen Q L, Mancuso C A, Matthijs Jansen G S, Witte S, Kapteyn H C, Murnane M M 2018 Optica 5 479Google Scholar

    [88]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216Google Scholar

    [89]

    Yao Y, Jiang Y, Klug J A, Wojcik M, Maxey E R, Sirica N S, Roehrig C, Cai Z, Vogt S, Lai B, Deng J 2020 Sci. Rep. 10 19550Google Scholar

    [90]

    Rokitski R, Sun P C, Fainman Y 2001 Opt. Lett. 26 1125Google Scholar

    [91]

    Beck A, Teboulle M 2009 IEEE Trans. Image Process. 18 2419Google Scholar

    [92]

    Cho A 2012 Science 338 1136Google Scholar

  • 图 1  HHG相干衍射成像(HHG-CDI)的发展史

    Figure 1.  The evolution of HHG-based coherent diffraction imaging (HHG-CDI).

    图 2  (a)上海光源主加速器; (b)台面HHG-EUV/SXR射线光源

    Figure 2.  (a)Shanghai synchrotron radiation facility(SSRF); (b) a HHG-EUV/SXR source.

    图 3  HHG产生的“三步模型”. 原子势垒会被激光场调制, 电子发生隧穿电离; 然后在激光电场加速; 随着电场反向, 电离电子与母核复合, 把获得能量以HHG光子辐射 (制作本图参考了文献 [49] )

    Figure 3.  The illustration of the three-step Model. The tunneling ionization can occur as the atomic barrier is modulated by the laser field. Then the electron is accelerated in the electric field; As the electric field is reversed, the ionized electron recombines with the parent nucleus and radiates its energy as HHG photons,Figure reproduced from Ref. [49]

    图 4  自由空间聚焦与空心波导HHG对比图

    Figure 4.  The comparison of HHG in free space focusing and hollow waveguide.

    图 5  平面屏衍射示意图

    Figure 5.  The schematic chart of plane diffraction.

    图 6  CDI相位恢复算法原理

    Figure 6.  The technical schematic and algorithm flow chart of CDI.

    图 7  凸集映射示意图, 一个随机猜测投影到检测器平面约束集, 然后投影到样本平面约束集, 完成一个更新周期. 多次迭代后, 找到两个约束集的交点: 真解

    Figure 7.  Diagram of convex-set mapping, a random guess is first projected to the detector plane constraint set, then to the sample plane constraint set to finish a full updating cycle. After many iterations, the solution is found at the intersection of the two constraint sets.

    图 8  扫描相干衍射成像示意及迭代原理(ePIE)(制作本图及图 17 参考了文献[71])

    Figure 8.  The iterative principle of Ptychography(ePIE), Fig.8 and Fig.17 reproduced with reference to ref.[71]

    图 9  HHG-CDI纳米成像系统

    Figure 9.  The coherent diffraction imaging system for a HHG extreme ultraviolet laser source.

    图 10  Ptychography算法中MEP约束的流程示意图[19]

    Figure 10.  Schematic layout of the MEP constraint within the ptychography algorithm[19].

    图 11  MEP约束获得Ptychographic重建和无MEP约束的波带片Ptychographic重建比较[19]

    Figure 11.  Comparison of Ptychographic reconstructions with MEP constraint and without MEP constraint for Zone Plate samples.[19]

    图 12  (a)Ewald 球; (b)正常入射样品照明和(c)斜入射照明的散射(图(b) , (c)参考文献[14])

    Figure 12.  (a)Ewald sphere; (b)normally incident sample illumination and (b) obliquely incident illumination(panel (b) and panel (c) refer to the Ref.[14]).

    图 13  反射模式相干衍射成像 (a) CCD上的实测衍射图; (b)采用校正算法, 提取图(a)中每个衍射峰的值, 重采样衍射图; (c)重建显示所有照明柱的平均值; (d)类似柱状结构的原子力显微镜图像[15]

    Figure 13.  Reflection-mode coherent diffraction imaging: (a) measured diffraction pattern on CCD; (b) resampled diffraction pattern in panel (a); (c) reconstruction showing the average of all illuminated pillars; (d) atomic force microscope image of similar pillar structures[15].

    图 14  实验装置、衍射数据和Ptychography重建结果 (a) 90次扫描数据集的代表性衍射图样; (b) SEM像; (c)探针重建; (d)样品重建[16]

    Figure 14.  Experimental setup for reflection-mode ptychography, diffraction data and ptychographic reconstruction: (a) Representative diffraction pattern taken from the 90-scan dataset; (b) SEM image of the sample; (c) reconstructed amplitude of the HHG beam; (d) Ptychographic reconstruction of the object[16].

    图 15  (a)频闪CDI动态成像实验布局示意图; (b)在每个时间延迟时, 用Ptychography获得样本的图像; (c)不同时间延迟下动态成像实验; (d)硅基镍纳米线的衍射图; (e)衍射效率作为泵浦探测延迟时间的函数的瞬态信号图[24]

    Figure 15.  (a) Schematic of the experimental layout for dynamic imaging on a tabletop; (b) tt every time delay, the image of the sample is obtained with Ptychographic CDI; (c) general concept of dynamic imaging experiment; (d) diffraction pattern of the Nickel lines on Silicon; (e) plot of the transient signal from diffraction efficiency as a function of pump-probe delay time[24].

    图 16  单个纳米结构中声波的动态成像. (a)频闪CDI显微镜动态成像实验装置; (b)重建样品振幅图像; (c)重建样品相位得到的高度图; (d)—(i) 重建镍纳米结构热膨胀和随后声波在基板中传播的快照[32]

    Figure 16.  Dynamic imaging of acoustic waves in an individual nanostructure: (a) Stroboscopic CDI microscope for dynamic imaging; (b) reconstructed quantitative amplitude image; (c) height map of the sample obtained from the reconstructed phase image; (d)–(i) ieconstructed snapshots of the nickel nanostructure thermal expansion and subsequent propagation of acoustic waves in the substrate[32]

    图 17  部分相干光(多色光)的 ePIE 迭代原理

    Figure 17.  The ePIE system for partially coherent light.

    图 18  结合HHG多次极紫外谐波的多光谱衍射成像 (a), (b) 6波长非扫描透射成像模式[82]; (c), (d) 4波长的叠层扫描反射成像模式[83]

    Figure 18.  Hyperspectral imaging by combining multiple EUV harmonics and PIM: (a), (b) a 6-wavelength non-scanning transmission mode CDI[82]; (c), (d) a ptychographic hyperspectral spectromicroscopy with a 4-wavelength comb[83].

    图 19  探针空间分离CDI (a)对多色光进行光栅分离; (b)利用BBO晶体对正交线偏振态分离[85]

    Figure 19.  Ptychograpic CDI with spatially separate beams: (a)Spectral multiplexing with spatially separate beams; (b) polarization multiplexing with spatially separate beams[85].

    图 20  (a) 基于小孔阵列的SSP-显微镜示意图; (b) 基于脉冲串照明单镜头曝光的TIMP原理示意图[28]

    Figure 20.  (a) Schematic diagram of SSP-microscope with ray tracing;(b)schematic diagram of TIMP based on single-shot ptychographic microscope[28].

    图 21  使用OAME重建9个复值对象和探针 (a)单架照相机抓拍所记录的强度图样;(b)重建帧复值对象和探头, 每帧分为4个区域(如第一帧):左上为物体振幅, 右上为物体相位, 左下为探头振幅, 右下为探头相位[27]

    Figure 21.  Reconstruction of 9 complex-valued objects and probes using OAME: (a) The intensity pattern recorded in a single camera snapshot; (b) reconstructed frames - complex-valued objects and probes. Each frame is divided to 4 quarters (as marked on the first frame): top-left is object amplitude, top-right is object phase, bottom left is probe amplitude and bottom-right is probe phase[27].

    图 22  未涂层(顶行)和铝涂层样品(底行)的 EUV Ptychography 图像. 作为比较, AFM 图像和 SEM 图像也在图中显示[75]

    Figure 22.  EUV ptychography images of the uncoated (top row) and Al-coated sample (bottom row). AFM images and SEM images are also shown as comparisons[75].

    图 23  纳米结构成像 (a)幅值和相位敏感成像反射仪的原理图; (b), (c)实施3D倾斜平面校正和全变分正则化处理和未作相应处理的相位重建; (d)宽视场振幅重建; (e) (f)材料的特征反射率与角度曲线—EUV光对材料成分的敏感性[30]

    Figure 23.  Experiment overview and nanostructure imaging: (a) Schematic of the amplitude- and phase-sensitive imaging reflectometer. Zoom-in of EUV ptychographic phase reconstructions of the sample, (b) before and (c) after precise implementation of 3D tilted-plane correction and total variation (TV) regularization. (d) Entire, wide field-of-view amplitude reconstruction. (e), (f) Characteristic reflectivity versus angle curves for several materials, showing the sensitivity of EUV light to material composition[30].

    图 24  空间分辨、组成敏感和三维纳米结构表征 (a)高掺杂结构, (b)低掺杂衬底和(c)高掺杂衬底中的成分与深度重建; (d)全重构样品的放大(插图); (e) Ptychography相位图像与遗传算法结果相结合得到的结果; (f)同一区域的AFM图像[30]

    Figure 24.  Spatially resolved, composition-sensitive, 3D nanostructure characterization: Composition versus depth reconstruction in the (a) higher-doped structures, (b) lower-doped substrate, and (c) higher-doped substrate; (D) zoom-out and zoom-in (inset) of fully reconstructed sample; (e) topography map obtained by combining the ptychographic phase image with the results of the genetic algorithm; (f) AFM image of the same region[30].

    表 1  半导体器件技术领域常用的几种纳米成像技术和相干衍射成像技术的对比

    Table 1.  Comparison of several nano-imaging techniques commonly used in semiconductor technology.

    纳米成像
    技术
    分辨率/nm光源镜头样品损伤/
    预处理
    表面3D
    形貌
    镀层下结构/
    层厚度检测
    化学成分/浓度成像
    速度
    光学显微镜~100红外, 可见光透镜无损伤无需处理可探测部分可探测/
    透明料可以
    可探测/半
    导体不可
    X射线显微镜~20SRS, XFEL波带片有损伤
    无需处理
    不能探测均可实现可探测
    扫描电子显微镜~0.1电子束磁透镜有损伤
    需处理
    可探测金属层不可/厚度不可无法探测较慢
    原子力显微镜~0.1 nm纳米探针无损伤
    无需处理
    可探测无法探测无法探测最慢
    HHG-CDI<10 nmSRS, FEL.HHG无透镜无损伤无需处理可探测均可探测可探测
    DownLoad: CSV
  • [1]

    Shadfan A, Pawlowski M, Wang Y, Subramanian K, Gabay I, Ben-Yakar A, Tkaczyk T 2016 Opt. Eng. 55 025107Google Scholar

    [2]

    Parimi P V, Lu W T T, Vodo P, Sridhar S 2003 Nature 426 404Google Scholar

    [3]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [4]

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E 1986 Biophys. J. 49 269Google Scholar

    [5]

    Wokosin D L, Centonze V E, Crittenden S, White J 2015 Bioimaging 4 208

    [6]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [7]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793Google Scholar

    [8]

    Hunt B R, Overman T L, Gough P 1998 Opt. Lett. 23 1123Google Scholar

    [9]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [10]

    Seibert M M, Ekeberg T, Maia F R, Svenda M, Andreasson J, Jonsson O, Odic D, Iwan B, Rocker A, Westphal D, Hantke M, DePonte D P, Barty A, Schulz J, Gumprecht L, Coppola N, Aquila A, Liang M, White T A, Martin A, Caleman C, Stern S, Abergel C, Seltzer V, Claverie J M, Bostedt C, Bozek J D, Boutet S, Miahnahri A A, Messerschmidt M, Krzywinski J, Williams G, Hodgson K O, Bogan M J, Hampton C Y, Sierra R G, Starodub D, Andersson I, Bajt S, Barthelmess M, Spence J C, Fromme P, Weierstall U, Kirian R, Hunter M, Doak R B, Marchesini S, Hau-Riege S P, Frank M, Shoeman R L, Lomb L, Epp S W, Hartmann R, Rolles D, Rudenko A, Schmidt C, Foucar L, Kimmel N, Holl P, Rudek B, Erk B, Homke A, Reich C, Pietschner D, Weidenspointner G, Struder L, Hauser G, Gorke H, Ullrich J, Schlichting I, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel K U, Andritschke R, Schroter C D, Krasniqi F, Bott M, Schorb S, Rupp D, Adolph M, Gorkhover T, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Chapman H N, Hajdu J 2011 Nature 470 78Google Scholar

    [11]

    Ekeberg T E, Svenda M, Abergel C, Maia F R N C, Seltzer V, Claverie J-M, Hantke M, Joensson O, Nettelblad C, van der Schot G, Liang M, DePonte D P, Barty A, Seibert M M, Iwan B, Andersson I, Loh N D, Martin A V, Chapman H, Bostedt C, Bozek J D, Ferguson K R, Krzywinski J, Epp S W, Rolles D, Rudenko A, Hartmann R, Kimmel N, Hajdu J 2015 Phys. Rev. Lett. 114 098102Google Scholar

    [12]

    Sandberg R L, Paul A, Raymondson D A, Haedrich S, Gaudiosi D M, Holtsnider J, Tobey R a I, Cohen O, Murnane M M, Kapteyn H C, Song C, Miao J, Liu Y, Salmassi F 2007 Phys. Rev. Lett. 99 098103Google Scholar

    [13]

    Iii C D, Rundquist A R, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [14]

    Gardner D F, Zhang B, Seaberg M D, Martin L S, Adams D E, Salmassi F, Gullikson E, Kapteyn H, Murnane M 2012 Opt. Express 20 19050Google Scholar

    [15]

    Seaberg M D, Adams D E, Zhang B, Murnane M M, Kapteyn H C 2012 Conference on Lasers and Electro-Optics San Jose, California, USA, May 06 2012 p CF1 L. 8

    [16]

    Seaberg M D, Zhang B, Gardner D F, Shanblatt E R, Murnane M M, Kapteyn H C, Adams D E 2014 Optica 1 39Google Scholar

    [17]

    Abbey B, Nugent K A, Williams G J, Clark J N, Peele A G, Pfeifer M A, de Jonge M, McNulty I 2008 Nat. Phys. 4 394Google Scholar

    [18]

    Zhang B, Seaberg M D, Adams D E, Gardner D F, Shanblatt E R, Shaw J M, Chao W, Gullikson E M, Salmassi F, Kapteyn H C, Murnane M M 2013 Opt. Express 21 21970Google Scholar

    [19]

    Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X, Galloway B R, Porter C L, Karl R, Jr., Bevis C, Adams D E, Kapteyn H C, Murnane M, Mancini G F 2017 Nat. Photonics 11 259Google Scholar

    [20]

    Mancini G F, Gardner D F, Tanksalvala M, Shanblatt E R, Zhang X, Galloway B R, Porter C R, Karl R, Bevis C, Kapteyn H, Murnane M M, Adams D E 2016 International Conference on Ultrafast Phenomena Santa Fe, New Mexico, USA, July 17 2016 pUTu2 B. 2

    [21]

    Porter C L, Tanksalvala M, Gerrity M, Miley G, Zhang X, Bevis C, Shanblatt E, Karl R, Jr., Murnane M M, Adams D E, Kapteyn H C 2017 Optica 4 1552Google Scholar

    [22]

    Whitehead L W, Williams G J, Quiney H M, Vine D J, Dilanian R A, Flewett S, Nugent K A, Peele A G, Balaur E, McNulty I 2009 Phys. Rev. Lett. 103 243902Google Scholar

    [23]

    Thibault P, Menzel A 2013 Nature 494 68Google Scholar

    [24]

    Karl R, Mancini G, Gardner D, Knobloch J, Frazer T, Hernandez-Charpak J N, Mayor B A, Shanblatt E, Tanksalvala M, Porter C, Bevis C, Adams D, Kapteyn H, Murnane M M 2017 Imaging and Applied Optics San Francisco, California, USA, June 26, 2017 pCW1 B. 2

    [25]

    Karl R, Mancini G, Gardner D, Shanblatt E, Knobloch J, Frazer T, Hernandez-Charpak J N, Mayor B A, Tanksalvala M, Porter C, Bevis C, Adams D, Kapteyn H, Murnane M 2018 High-Brightness Sources and Light-driven Interactions Strasbourg, France, March 26, 2018 pET2B.6

    [26]

    Pan X, Liu C, Zhu J 2013 Appl. Phys. Lett. 103 171105Google Scholar

    [27]

    Sidorenko P, Cohen O 2016 Optica 3 9Google Scholar

    [28]

    Sidorenko P, Lahav O, Cohen O 2017 Opt. Express 25 10997Google Scholar

    [29]

    Wengrowicz O, Peleg O, Loevsky B, Chen B K, Haham G I, Sainadh U S, Cohen O 2019 Opt. Express 27 24568Google Scholar

    [30]

    Tanksalvala M, Porter C L, Esashi Y, Wang B, Jenkins N W, Zhang Z, Miley G P, Knobloch J L, McBennett B, Horiguchi N, Yazdi S, Zhou J, Jacobs M N, Bevis C S, Karl R M, Jr., Johnsen P, Ren D, Waller L, Adams D E, Cousin S L, Liao C T, Miao J, Gerrity M, Kapteyn H C, Murnane M M 2021 Sci. Adv. 7 9667Google Scholar

    [31]

    Le H V, Dinh K B, Hannaford P, Van Dao L 2014 J. Appl. Phys. 116 173104

    [32]

    Karl R M, Mancini G F, Knobloch J L, Frazer T D, Hernandez-Charpak J N, Abad B, Gardner D F, Shanblatt E R, Tanksalvala M, Porter C L, Bevis C S, Adams D E, Kapteyn H C, Murnane M M 2018 Sci. Adv. 4 eaau4295Google Scholar

    [33]

    Antunez P D, Bishop D M, Luo Y, Haight R 2017 Nat. Energy 2

    [34]

    Frazer T D, Knobloch J L, Hernández-Charpak J N, Hoogeboom-Pot K M, Nardi D, Yazdi S, Chao W, Anderson E H, Tripp M K, King S W, Kapteyn H C, Murnane M M, Abad B 2020 Phys. Rev. Mater. 4 073603Google Scholar

    [35]

    King S W, Simka H, Herr D, Akinaga H, Garner M 2013 APL Mater. 1 040701Google Scholar

    [36]

    Mochi I, Fernandez S, Nebling R, Locans U, Helfenstein P, Rajeev R, Dejkameh A, Kazazis D, Tseng L T, Ekinci Y 2019 Amplitude and Phase Defect Inspection on EUV Reticles Using RESCAN p29

    [37]

    Moler K A 2017 Nat. Mater. 16 1049Google Scholar

    [38]

    Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J 2021 PhotoniX 2 4Google Scholar

    [39]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [40]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar

    [41]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [42]

    Ammosov M V, Delone N B, Krainov V P 1986 Proceedings of SPIE Quebec, Canada, October 21, 1986 p138

    [43]

    盛政明编 2003 强场激光物理研究前沿(上海: 上海交通大学出版社) 第5, 57页

    Sheng Z M 2014 Advances in High Field Laser Physics (Shanghai: Shanghai Jiao Tong University Press) pp5, 57 (in Chinese)

    [44]

    Zhang X, Libertun A R, Paul A, Gagnon E, Backus S, Christov I P, Murnane M M, Kapteyn H C, Bartels R A, Liu Y, Attwood D T 2004 Opt. Lett. 29 1357Google Scholar

    [45]

    Rundquist A, Durfee C G, Chang Z H, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [46]

    Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y W, Attwood D, Jacobsen C 2002 Science 297 376

    [47]

    Zhang X S, Lytle A, Popmintchev T, Paul A, Wagner N, Murnane M, Kapteyn H, Christov I P 2005 Opt. Lett. 30 1971Google Scholar

    [48]

    Lytle A L, Zhang X, Arpin P, Cohen O, Murnane M M, Kapteyn H C, Ieee 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference San Jose, CA, USA, May 4–9 p1984

    [49]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381

    [50]

    Martin G, Tobias H, Robert K, Alexander K, Chang L, Ziyao W, Mathias L, Christian G, Cesar J, Jose A L, Axel S, Rodrigo A C, Jan R, Jens L Proc. SPIE

    [51]

    Feehan J S, Price J H V, Butcher T J, Brocklesby W S, Frey J G, Richardson D J 2017 Appl. Phys. B 123 43

    [52]

    Hoppe W 1969 Acta Crystallogr. Sect. A 25 508Google Scholar

    [53]

    Robinson I K, Vartanyants I A, Williams G J, Pfeifer M A, Pitney J A 2001 Phys. Rev. Lett. 87 195505Google Scholar

    [54]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795Google Scholar

    [55]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506Google Scholar

    [56]

    Roy S, Parks D, Seu K A, Su R, Turner J J, Chao W, Anderson E H, Cabrini S, Kevan S D 2011 Nat. Photonics 5 243Google Scholar

    [57]

    Bates R H T 1982 Phys. Rep. 90 203Google Scholar

    [58]

    Miao J, Sayre D, Chapman H N 1998 J. Opt. Soc. Am. A 15 1662Google Scholar

    [59]

    Gerchberg R W, Saxton, W. O. 1972 Optik 35 237

    [60]

    Burge R E 1981 Scanning 4 159

    [61]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [62]

    Streibl N 1984 Opt. Commun. 49 6Google Scholar

    [63]

    Teague M R 1983 J. Opt. Soc. Am. A 73 1434Google Scholar

    [64]

    Sayre D 1952 Acta Crystallogr. 5 843

    [65]

    Hoppe W 1969 Acta Crystallogr. Sect. A 25 495Google Scholar

    [66]

    Hoppe W, Strube G 1969 Acta Crystallogr. Sect. A 25 502Google Scholar

    [67]

    Hegerl R, Hoppe W 1972 Proceedings of the 5th European Congress on Electron Microscopy p628

    [68]

    Marchesini S 2007 Rev. Sci. Instrum. 78 011301Google Scholar

    [69]

    Bauschke H H, Combettes P L, Luke D R 2002 J. Opt. Soc. Am. A 19 1334Google Scholar

    [70]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

    [71]

    Pan X C, Liu C, Tao H, Liu H G, Zhu J Q 2020 Acta Optica Sinica 40 111010Google Scholar

    [72]

    Maiden A M, Humphry M J, Rodenburg J M 2012 J. Opt. Soc. Am. A 29 1606

    [73]

    Zhang F, Peterson I, Vila-Comamala J, Berenguer A D F, Bean R, Chen B, Menzel A, Robinson I K, Rodenburg J M 2013 Opt. Express 21 13592Google Scholar

    [74]

    Zheng G, Horstmeyer R, Yang C 2015 Nat. Photonics 9 621Google Scholar

    [75]

    Shanblatt E R, Porter C L, Gardner D F, Mancini G F, Karl R M, Tanksalvala M,Bevis C S, Vartanian V H, Kapteyn H C, Adams D E 2016 Computational Optical Sensing and Imaging 2016 CT4C.1

    [76]

    Raines K S, Salha S, Sandberg R L, Jiang H, Rodriguez J A, Fahimian B P,Kapteyn H C, Du J, Miao J 2010 Nature 463 214

    [77]

    Miao J, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [78]

    Spence J C H, Weierstall U, Howells M 2004 Ultramicroscopy 101 149Google Scholar

    [79]

    Abbey B, Whitehead L W, Quiney H M, Vine D J, Cadenazzi G A, Henderson C A, Nugent K A, Balaur E, Putkunz C T, Peele A G, Williams G J, McNulty I 2011 Nat. Photonics 5 420Google Scholar

    [80]

    Batey D J, Claus D, Rodenburg J M 2014 Ultramicroscopy 138 13Google Scholar

    [81]

    Williams G J, Quiney H M, Peele A G, Nugent K A 2007 Phys. Rev. B 75 4102

    [82]

    Chen B, Dilanian R A, Teichmann S, Abbey B, Peele A, Williams G J, Hannaford P, Dao L V, Quiney H M, Nugent K A 2009 Phys. Rev. A 79 023809Google Scholar

    [83]

    Zhang B, Gardner D F, Seaberg M H, Shanblatt E R, Porter C L, Karl R, Mancuso C A, Kapteyn H C, Murnane M M, Adams D E 2016 Opt. Express 24 18745Google Scholar

    [84]

    Bevis C, Karl R, Reichanadter J, Gardner D F, Porter C, Shanblatt E, Tanksalvala M, Mancini G F, Kapteyn H, Murnane M, Adams D 2018 Ultramicroscopy 184 164Google Scholar

    [85]

    Karl R, Bevis C, Lopez-Rios R, Reichanadter J, Gardner D, Porter C, Shanblatt E, Tanksalvala M, Mancini G F, Murnane M, Kapteyn H, Adams D 2015 Opt. Express 23 30250Google Scholar

    [86]

    Rönsch-Schulenburg J, Faatz B, Honkavaara K, Kuhlmann M, Schreiber S, Treusch R, Vogt M 2017 J. Phys. Conf. Ser. 874 012023Google Scholar

    [87]

    Ellis J L, Dorney K M, Hickstein D D, Brooks N J, Gentry C, Hernández-García C, Zusin D, Shaw J M, Nguyen Q L, Mancuso C A, Matthijs Jansen G S, Witte S, Kapteyn H C, Murnane M M 2018 Optica 5 479Google Scholar

    [88]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216Google Scholar

    [89]

    Yao Y, Jiang Y, Klug J A, Wojcik M, Maxey E R, Sirica N S, Roehrig C, Cai Z, Vogt S, Lai B, Deng J 2020 Sci. Rep. 10 19550Google Scholar

    [90]

    Rokitski R, Sun P C, Fainman Y 2001 Opt. Lett. 26 1125Google Scholar

    [91]

    Beck A, Teboulle M 2009 IEEE Trans. Image Process. 18 2419Google Scholar

    [92]

    Cho A 2012 Science 338 1136Google Scholar

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Qi Nai-Jie, He Xiao-Liang, Wu Li-Qing, Liu Cheng, Zhu Jian-Qiang. Effect of detector photoelectric parameters on ptychographic iterative engine. Acta Physica Sinica, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [3] Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Quantitative phase microscopy imaging based on fractional spiral phase plate. Acta Physica Sinica, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [4] Xu Wen-Hui, Ning Shou-Cong, Zhang Fu-Cai. Review of partially coherent diffraction imaging. Acta Physica Sinica, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [5] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [6] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [7] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [8] Li Yuan-Jie, He Xiao-Liang, Kong Yan, Wang Shou-Yu, Liu Cheng, Zhu Jian-Qiang. Shearing interferometric electron beam imaging based on ptychographic iterative engine method. Acta Physica Sinica, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [9] Xiao Jun, Li Deng-Yu, Wang Ya-Li, Shi Yi-Shi. Ptychographical algorithm of the parallel scheme. Acta Physica Sinica, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [10] Guan Zhong, Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Study of high-order harmonic generation in crystals exposed to laser fields. Acta Physica Sinica, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [11] Yu Wei, He Xiao-Liang, Liu-Cheng, Zhu Jian-Qiang. Ptychographic iterative engine with the incoherent illumination. Acta Physica Sinica, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [12] He Xiao-Liang, Liu Cheng, Wang Ji-Cheng, Wang Yue-Ke, Gao Shu-Mei, Zhu Jian-Qiang. Study on the periodic error in ptychographic iterative engine imaging. Acta Physica Sinica, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] Wang Ya-Li, Shi Yi-Shi, Li Tuo, Gao Qian-Kun, Xiao Jun, Zhang San-Guo. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band. Acta Physica Sinica, 2013, 62(6): 064206. doi: 10.7498/aps.62.064206
    [14] Lu Fa-Ming, Xia Yuan-Qin, Zhang Sheng, Chen De-Ying. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Physica Sinica, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [15] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [16] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [17] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [18] Wang Chen, Zheng Wu-Di, Fang Zhi-Heng, Sun Jin-Ren, Wang Wei, Xiong Jun, Fu Si-Zu, Gu Yuan, Wang Shi-Ji, Qiao Xiu-Mei, Zhang Guo-Ping. Shadow imaging studies on laser-ablated foil target by using an X-ray laser. Acta Physica Sinica, 2010, 59(7): 4767-4773. doi: 10.7498/aps.59.4767
    [19] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  11646
  • PDF Downloads:  373
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2022
  • Accepted Date:  04 July 2022
  • Available Online:  08 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回