Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on noise characteristics of audio frequency band in output field of optical filter cavity

Zhang Chao-Qun Li Rui-Xin Zhang Wen-Hui Jiao Nan-Jing Tian Long Wang Ya-Jun Zheng Yao-Hui

Citation:

Experimental study on noise characteristics of audio frequency band in output field of optical filter cavity

Zhang Chao-Qun, Li Rui-Xin, Zhang Wen-Hui, Jiao Nan-Jing, Tian Long, Wang Ya-Jun, Zheng Yao-Hui
PDF
HTML
Get Citation
  • Precision measurement is an important direction of today’s frontier scientific research. Using lasers to achieve high-precision target measurement has become an important way to improve measurement accuracy, which can be used in various fields. However, for a certain application, the measurement accuracy will directly depend on the noise level of the laser source. Most of applications require that the measurement frequency band is concentrated in the audio frequency band. In order to obtain a low-noise laser source with shot noise limited in the applied frequency band, active and/or passive noise reduction is usually an option, i.e. active feedback control or filter cavity technique, etc. Therefore, noise analysis and suppression techniques are the main concern of the precision measurement. The optical filter cavity acts as an optical low-pass filter, which can effectively suppress high-frequency noise beyond its linewidth. In this work, we find that the intensity noise of the output field of an optical filter cavity is higher than the noise floor of the laser. The main sources of noise are analyzed experimentally, showing that 1) excess noise is introduced by cavity length locking, and 2) laser phase and pointing noises are coupled to the intensity one by the cavity. To cancel the excess noise as much as possible, we optimize the feedback control loop by measuring the open-loop and closed-loop transfer functions of the mode cleaner (MC), combined with the critical proportionality method. All the control loops are homemade, and the proportional-integral-derivative (PID) is designed with a field programmable gate array board for expediently achieving a noise reduction up to 30 dB at the audio frequency. Then the control loop is optimized to the best condition without introducing the excess noise. Compared with the free-running laser, MC filters out the high-frequency noise, meanwhile converts the phase noise and pointing noise of input field into the intensity noise of the output field. Therefore, the power noise spectrum in the audio band is still higher than that of the input optical field itself. In the future, an active control loop will be used to suppress the noise power. The experimental results provide the basic means for application research such as feedback control loop noise analysis, which will promote the development of precision measurement toward higher measurement accuracy.
      Corresponding author: Wang Ya-Jun, YJWangsxu@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grant Nos. 62027821, 62225504, 11874250, 62035015, 12174234, 12274275, 62001374), the Key Research and Development Projects of Shanxi Province, China (Grant No. 202102150101003), and the Program for Sanjin Scholar of Shanxi Province, China.
    [1]

    Abbott B P, et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102

    [2]

    Abbott B P, et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 241103

    [3]

    Lough J, Schreiber E, Bergamin F, et al. 2021 Phys. Rev. Lett. 126 041102Google Scholar

    [4]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈立荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [5]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photonics. 7 229Google Scholar

    [6]

    Casacio C A, Madsen L S, Terrasson A, Waleed M, Barnscheidt K, Hage B, Taylor M A, Bowen W P 2021 Nature 594 201Google Scholar

    [7]

    Brito R, Ghosh S, Barausse E, Berti E, Cardoso E, Dvorkin I, Klein A, Pain P 2017 Phys. Rev. D 96 064050Google Scholar

    [8]

    Armano M, Audley H, Baird J, et al. 2018 Phys. Rev. Lett. 120 061101Google Scholar

    [9]

    Kaufer S, Kasprzack M, Frolov V, Willke B 2017 Classical and Quantum Gravity. 34 145001Google Scholar

    [10]

    Junker J, Oppermann P 2017 Opt. Lett. 42 755Google Scholar

    [11]

    Kaufer S, Willke B 2019 Opt. Lett. 44 1916Google Scholar

    [12]

    王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 物理学报 69 234204Google Scholar

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204Google Scholar

    [13]

    王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉 2021 物理学报 70 204202Google Scholar

    Wang Y J, Wang J P, Zhang W H, Li R X, Tian L, Zheng Y H 2021 Acta Phys. Sin. 70 204202Google Scholar

    [14]

    马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205Google Scholar

    Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205Google Scholar

    [15]

    聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar

    Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar

    [16]

    Black E D 2001 American J. Phys. 69 79Google Scholar

    [17]

    Ziegler J G, Nichols N B 1942 Trans. ASME. 64 759

    [18]

    Richard C Dorf, Bishop R H 2008 Modern Control Systems (New York: PEARSON) p257

    [19]

    Li Z X, Ma W G, Yang W H, et al. 2016 Opt. Lett. 41 3331Google Scholar

    [20]

    Li Z X, Tian Y H, Wang Y J, Ma W G, Zheng Y H 2019 Opt. Express. 27 7064Google Scholar

    [21]

    Wang Y J, Zhang W H, Li R X, Tian L, Zheng Y H 2021 Appl. Phys. Lett. 118 134001Google Scholar

    [22]

    Zhang W H, Jiao N J, Li R X, Tian L, Wang Y J, Zheng Y H 2021 Opt. Express. 29 24315Google Scholar

    [23]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instru. 87 103114Google Scholar

    [24]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instru. 88 103101Google Scholar

    [25]

    Jiao N J, Li R X, Wang Y J, Zhang W H, Zhang C Q, Tian L, Zheng Y H 2022 Optics & Laser Technol. 154 108303

    [26]

    Seifert F 2010 Ph. D. Dissertation (Hanover: Wilhelm Leibniz University)

  • 图 1  反馈控制系统框图($ G\left(\omega \right) $是被控对象的传递函数, $ H\left(\omega \right) $是控制器的传递函数, $ X\left(\omega \right) $是输入信号, $ Y\left(\omega \right) $是系统的输出信号, $ E\left(\omega \right) $是驱动信号)

    Figure 1.  Block diagram of feedback control system. G (ω) is the transfer function of the controlled object, H (ω) is the transfer function of the controller, X (ω) is the input signal, Y (ω) is the output signal of the system, and E (ω) is the driving signal.

    图 2  光学滤波腔输出场音频段噪声特性分析实验装置图 (OI, 光学隔离器; EOM, 电光相位调制器; BS, 分束镜; PBS, 偏振分束器; MC, 模式清洁器; PD1—3, 光电探测器; HV, 高压放大器; SA, 频谱分析仪; ADC, 模拟数字转换; DAC, 数字模拟转换; FPGA, 现场可编程门阵列)

    Figure 2.  Experimental setup for analyzing the noise characteristics of the output field of the optical filter cavity (OI, optical isolator; EOM, electro-optic phase modulator; BS, beam splitter; PBS, polarizing beam splitter; MC, mode cleaner; PD1–3, photodetector; HV, high voltage amplifier; SA, spectrum analyzer; ADC, analog to digital conversion; DAC, digital to analog conversion; FPGA, field programmable gate array).

    图 3  激光的本底强度噪声(橙色曲线)和MC腔长锁定后输出光场的强度噪声(其他颜色曲线) (a) 频率3—300 kHz范围内的功率噪声谱(分辨率带宽为10 kHz; 视频带宽为50 Hz); (b) 频率小于3 kHz范围内的功率噪声谱(分辨率带宽为10 Hz; 视频带宽为1 Hz )

    Figure 3.  Background intensity noise of the laser (orange curve) and the intensity noise of the output light field after the MC cavity length is locked (other color curves): (a) Power noise spectrum in the frequency range of 3–300 kHz (Resolution bandwidth (RBW) is 10 kHz, video bandwidth (VBW) is 50 Hz); (b) power noise spectrum in the frequency range less than 3 kHz (RBW is 10 Hz, VBW is 1 Hz).

    图 4  系统开环传递函数的幅度和相位

    Figure 4.  Amplitude and phase plots of the open-loop transfer function of the system.

    图 5  闭环系统传递函数的幅度

    Figure 5.  Magnitude plot of the transfer function of the closed-loop system.

    表 1  实验参数

    Table 1.  Parameters of the experiment.

    编号abcd
    kP5×2–105×2–55×2–55×2–5
    kI5×2–145×2–145×2–125×2–10
    带宽/kHz0.290.751.302.00
    相位裕度/(°)225270200190
    开环传递函数起始幅值/dB19194046
    闭环传递函数起始幅值/dB1.50.3–23–30
    DownLoad: CSV
  • [1]

    Abbott B P, et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102

    [2]

    Abbott B P, et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 241103

    [3]

    Lough J, Schreiber E, Bergamin F, et al. 2021 Phys. Rev. Lett. 126 041102Google Scholar

    [4]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈立荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [5]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photonics. 7 229Google Scholar

    [6]

    Casacio C A, Madsen L S, Terrasson A, Waleed M, Barnscheidt K, Hage B, Taylor M A, Bowen W P 2021 Nature 594 201Google Scholar

    [7]

    Brito R, Ghosh S, Barausse E, Berti E, Cardoso E, Dvorkin I, Klein A, Pain P 2017 Phys. Rev. D 96 064050Google Scholar

    [8]

    Armano M, Audley H, Baird J, et al. 2018 Phys. Rev. Lett. 120 061101Google Scholar

    [9]

    Kaufer S, Kasprzack M, Frolov V, Willke B 2017 Classical and Quantum Gravity. 34 145001Google Scholar

    [10]

    Junker J, Oppermann P 2017 Opt. Lett. 42 755Google Scholar

    [11]

    Kaufer S, Willke B 2019 Opt. Lett. 44 1916Google Scholar

    [12]

    王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 物理学报 69 234204Google Scholar

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204Google Scholar

    [13]

    王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉 2021 物理学报 70 204202Google Scholar

    Wang Y J, Wang J P, Zhang W H, Li R X, Tian L, Zheng Y H 2021 Acta Phys. Sin. 70 204202Google Scholar

    [14]

    马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205Google Scholar

    Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205Google Scholar

    [15]

    聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar

    Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar

    [16]

    Black E D 2001 American J. Phys. 69 79Google Scholar

    [17]

    Ziegler J G, Nichols N B 1942 Trans. ASME. 64 759

    [18]

    Richard C Dorf, Bishop R H 2008 Modern Control Systems (New York: PEARSON) p257

    [19]

    Li Z X, Ma W G, Yang W H, et al. 2016 Opt. Lett. 41 3331Google Scholar

    [20]

    Li Z X, Tian Y H, Wang Y J, Ma W G, Zheng Y H 2019 Opt. Express. 27 7064Google Scholar

    [21]

    Wang Y J, Zhang W H, Li R X, Tian L, Zheng Y H 2021 Appl. Phys. Lett. 118 134001Google Scholar

    [22]

    Zhang W H, Jiao N J, Li R X, Tian L, Wang Y J, Zheng Y H 2021 Opt. Express. 29 24315Google Scholar

    [23]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instru. 87 103114Google Scholar

    [24]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instru. 88 103101Google Scholar

    [25]

    Jiao N J, Li R X, Wang Y J, Zhang W H, Zhang C Q, Tian L, Zheng Y H 2022 Optics & Laser Technol. 154 108303

    [26]

    Seifert F 2010 Ph. D. Dissertation (Hanover: Wilhelm Leibniz University)

  • [1] Li Xiang, Wang Jia-Wei, Li Fan, Huang Tian-Shi, Dang Hao, Zhao De-Sheng, Tian Long, Shi Shao-Ping, Li Wei, Yin Wang-Bao, Zheng Yao-Hui. Low-noise laser intensity noise evaluation system at Hz frequency band for ground-based gravitational wave detection. Acta Physica Sinica, 2025, 74(3): . doi: 10.7498/aps.74.20241319
    [2] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [3] Nie Dan-Dan, Feng Jin-Xia, Qi Meng, Li Yuan-Ji, Zhang Kuan-Shou. Intensity noise of tunable infrared laser based on singly resonant optical parametric oscillator. Acta Physica Sinica, 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [4] Feng Jin-Xia, Du Jing-Shi, Jin Xiao-Li, Li Yuan-Ji, Zhang Kuan-Shou. Generation of audio-band frequency squeezed light at 1.34 μm. Acta Physica Sinica, 2018, 67(17): 174203. doi: 10.7498/aps.67.20180301
    [5] Duan Ya-Xuan, Liu Shang-Kuo, Chen Yong-Quan, Xue Xun, Zhao Jian-Ke, Gao Li-Min. A method to measure the modulation transfer function of Bayer filter color camera. Acta Physica Sinica, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [6] Xiang Xiao, Wang Shao-Feng, Hou Fei-Yan, Quan Run-Ai, Zhai Yi-Wei, Wang Meng-Meng, Zhou Cong-Hua, Xu Guan-Jun, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang. A broadband passive cavity for analyzing and filtering the noise of a femtosecond laser. Acta Physica Sinica, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [7] Tai Zhao-Yang, Hou Fei-Yan, Wang Meng-Meng, Quan Run-Ai, Liu Tao, Zhang Shou-Gang, Dong Rui-Fang. Intensity noise analysis of a fibre laser after passing through an optical mode cleaner. Acta Physica Sinica, 2014, 63(19): 194203. doi: 10.7498/aps.63.194203
    [8] Jiao Jian, Gao Jin-Song, Xu Nian-Xi, Feng Xiao-Guo, Hu Hai-Xiang. Study on the lumped parameters of FSS in terms of the transfer function. Acta Physica Sinica, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [9] Zhang Li-Bin, Chen Shao-Wu, Fei Yong-Hao, Cao Tong-Tong, Cao Yan-Mei, Lei Xun. Study of data format transform with optical waveguide resonators. Acta Physica Sinica, 2013, 62(19): 194201. doi: 10.7498/aps.62.194201
    [10] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [11] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [12] Wang Ze-Feng, Hu Yong-Ming, Luo Hong, Meng Zhou, Ni Ming, Xiong Shui-Dong. Influence of cavity wall elasticity on resonant frequency of small underwater cylindrical Helmholtz resonator. Acta Physica Sinica, 2009, 58(4): 2507-2512. doi: 10.7498/aps.58.2507
    [13] Liu Si-Ping, Zhang Yu-Chi, Zhang Peng-Fei, Li-Gang, Wang Jun-Min, Zhang Tian-Cai. Experimental study on the properties of the AR-coated external cavity diode lasers. Acta Physica Sinica, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [14] Qi Xun-Jun, Lin Bin, Cao Xiang-Qun, Chen Yu-Qing. Study of modular transfer function-based optieal low-pass filter evaluation model and experiment. Acta Physica Sinica, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [15] Wang Ze-Feng, Hu Yong-Ming, Meng Zhou, Ni Ming. Acoustic characteristics of underwater cylindrical Helmholtz resonator. Acta Physica Sinica, 2008, 57(11): 7022-7029. doi: 10.7498/aps.57.7022
    [16] Du Lin, Xu Wei, Jia Fei-Lei, Li Shuang. Control of gyro system based on lowpass filter function feedback. Acta Physica Sinica, 2007, 56(7): 3813-3819. doi: 10.7498/aps.56.3813
    [17] Zhang Yu-Chi, Wang Xiao-Yong, Li Gang, Wang Jun-Min, Zhang Tian-Cai. Inter-mode intensity correlations in a free-running diode laser. Acta Physica Sinica, 2007, 56(4): 2202-2206. doi: 10.7498/aps.56.2202
    [18] DONG RUI-FANG, ZHANG JUN-XIANG, ZHANG TIAN-CAI, ZHANG JING, XIE CHANG-DE, PENG KUN-CHI. INTENSITY NOISE SQUEEZING OF LASER DIODE WITH INPHASE EXTERNAL WEAK FEEDBACK BY HALF WAVE PLATE. Acta Physica Sinica, 2001, 50(3): 462-466. doi: 10.7498/aps.50.462
    [19] HUANG JING, LIANG RUI-SHENG, SITU DA, ZHANG KUN-MING, TANG ZHI-LIE. THE OPTICAL TRANSFER FUNCTION OF CONFOCAL SCANNING LASER MICROSCOPY WITH GAUSS SOURCE. Acta Physica Sinica, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [20] XIMEN JI-YE, YAN JI-WEN, HUANG XU. ON ELECTRON OPTICAL TRANSFER FUNCTION AND IMPULSE RESPONSE IN THE PRESENCE OF SPHERICAL ABERRATION AND DEFOCUS. Acta Physica Sinica, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
Metrics
  • Abstract views:  3966
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2022
  • Accepted Date:  15 September 2022
  • Available Online:  02 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回