-
The InAs/GaSb superlattices (SPLs) is an important component of quantum cascade laser (QCL) and interband cascade laser (ICL). In particular, the upper and lower SPL waveguide layers of the ICL are alternately grown from a large number of ultra-film epitaxial layers (nm) by molecular beam epitaxy(MBE). Subtle lattice mismatch may directly lead to the deterioration of material crystal quality, and the change of thicknessand the composition of each layer will strongly affect the structural performance of device material. The optimal growth temperature of InAs/GaSb SPLs is about 420 ℃. By growing GaSb/AlSb and InAs/GaSb SPL both with 40 short periods under the substrate rotating, the thickness of GaSb layer and AlSb layer are 5.448 nm and 3.921 nm, and the thickness of InAs layer and GaSb layer are 8.998 nm and 13.77 nm, respectively. The error is within about 10%, and the optimal growth conditions of InAs/AlSb SPLs are obtained. A lattice matched 40-period InAs/AlSb superlattice waveguide layer is grown on GaSb substrate. The influence of drifting As injection on the average lattice constant of InAs/AlSb superlattice is fully considered. Under the condition of fixed SOAK time of 3 s, the As pressure is changed to 1.7 × 10–6 mbar to adjust the average lattice constants of the superlattices and achieve their matching with the GaSb substrate lattice. The experimental results show that the 0 order satellite peak of the SPL coincides with the peak of the GaSb substrate, and has a perfect lattice matching, and that the sharp second order satellite peak and the periodic structure good repeatability also indicate that the superlattice material has the excellent structural quality of the SPLs structure.
-
Keywords:
- molecular beam epitaxy(MBE) /
- lattice matched /
- superlattice /
- attice mismatch
[1] Bennett B R, Magno R, Boos J B, Kruppa W, Ancona M G 2005 Solid-State Electron. 49 1875Google Scholar
[2] Cerutti L, Boissier G, Grech P, Perona A, Angellier J, Rouillard Y, Kaspi R, Genty F 2006 Electron. Lett. 42 1400Google Scholar
[3] Delaunay P Y, Nguyen B M, Hoffman D, Hood A, Huang E K W, Razeghi M, Tidrow M Z 2008 Appl. Phys. Lett. 92 111112Google Scholar
[4] Baranov A N, Teissier R 2015 IEEE J. Sel. Top. Quantum Electron. 21 1200612
[5] Cathabard O, Teissier R, Devenson J, Moreno J, Baranov A N 2010 Appl. Phys. Lett. 96 141110Google Scholar
[6] Benveniste E, Vasanelli A, Delteil A, Devenson J, Teissier R, Baranov A, Andrews A M, Strasser G, Sagnes I, Sirtori C 2008 Appl. Phys. Lett. 93 131108Google Scholar
[7] Nguyen V H, Loghmari Z, Philip H, Bahriz M, Baranov A N, Teissier R 2019 Photonics 6 31Google Scholar
[8] Brandstetter M, Kainz M A, Zederbauer T, Krall M, Schönhuber S, Detz H, Schrenk W, Andrews A M, Strasser G, Unterrainer K 2016 Appl. Phys. Lett. 108 011109Google Scholar
[9] Vurgaftman I, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Lindle J R, Meyer J R 2011 Nat. Commun. 2 585Google Scholar
[10] Weih R, Kamp M, Hofling S 2013 Appl. Phys. Lett. 102 231123Google Scholar
[11] Kroemer H 2004 Physica E 20 196Google Scholar
[12] Li L H, Zhu J X, Chen L, Davies A G, Linfield E H 2015 Opt. Express 23 2720Google Scholar
[13] Schmitz J, Wagner J, Fuchs F, Herres N, Koidl P, Ralston J D 1995 J. Cryst. Growth 150 858Google Scholar
[14] Jackson E M, Boishin G I, Aifer E H, Bennett B R, Whitman L J 2004 J. Cryst. Growth 270 301Google Scholar
[15] Xie Q H, Van Nostrand J E, Brown J L, Stutz C E 1999 J. Appl. Phys. 86 329Google Scholar
[16] Diaz-Thomas D A, Stepanenko O, Bahriz M, Calvez S, Tournié E, Baranov A N, Almuneau G, Cerutti L 2019 Opt. Express 27 31425Google Scholar
[17] Canedy C L, Abell J, Bewley W W, Aifer E H, Kim C S, Nolde J A, Kim M, Tischler J G, Lindle J R, Jackson E M, Vurgaftman I, Meyer J R 2010 J. Vac. Sci. Technol. B 28 C3G8Google Scholar
[18] Haugan H J, Grazulis L, Brown G J, Mahalingam K, Tomich D H 2004 J. Cryst. Growth 261 471Google Scholar
[19] Bracker A S, Yang M J, Bennett B R, Culbertson J C, Moore W J 2000 J. Cryst. Growth 220 384Google Scholar
[20] 尤明慧, 祝煊宇, 李雪, 李士军, 刘国军 2021 红外与毫米波学报 40 725Google Scholar
You M H, Zhu X Y, Li X, Li S J, Liu G J 2021 J. Infrared Millim. Waves 40 725Google Scholar
[21] https://lase.mer.utexas.edu/mbe.php [2022-07-09]
[22] 马琳, 王玉田, 庄蔚华 1992 红外与毫米波学报 11 37
Ma L, Wang Y T, Zhunag W H 1992 J. Infrared Millim. Waves 11 37
[23] https://lelpersonal.weebly.com/uploads/1/3/4/6/13462265/report.pdf (2022.07.09)
[24] Bauer A, Dallner M, Herrmann A, Lehnhardt T, Kamp M, Höfling S, Worschech L, Forchel A 2010 Nanotechnology 21 455603Google Scholar
[25] Tuttle G, Kroemer H, English J H 1990 J. Appl. Phys. 67 3032Google Scholar
[26] Spitzer J, Höpner A, Kuball M, Cardona M, Jenichen B, Neuroth H, Brar B, Kroemer H 1995 J. Appl. Phys. 77 811Google Scholar
-
-
[1] Bennett B R, Magno R, Boos J B, Kruppa W, Ancona M G 2005 Solid-State Electron. 49 1875Google Scholar
[2] Cerutti L, Boissier G, Grech P, Perona A, Angellier J, Rouillard Y, Kaspi R, Genty F 2006 Electron. Lett. 42 1400Google Scholar
[3] Delaunay P Y, Nguyen B M, Hoffman D, Hood A, Huang E K W, Razeghi M, Tidrow M Z 2008 Appl. Phys. Lett. 92 111112Google Scholar
[4] Baranov A N, Teissier R 2015 IEEE J. Sel. Top. Quantum Electron. 21 1200612
[5] Cathabard O, Teissier R, Devenson J, Moreno J, Baranov A N 2010 Appl. Phys. Lett. 96 141110Google Scholar
[6] Benveniste E, Vasanelli A, Delteil A, Devenson J, Teissier R, Baranov A, Andrews A M, Strasser G, Sagnes I, Sirtori C 2008 Appl. Phys. Lett. 93 131108Google Scholar
[7] Nguyen V H, Loghmari Z, Philip H, Bahriz M, Baranov A N, Teissier R 2019 Photonics 6 31Google Scholar
[8] Brandstetter M, Kainz M A, Zederbauer T, Krall M, Schönhuber S, Detz H, Schrenk W, Andrews A M, Strasser G, Unterrainer K 2016 Appl. Phys. Lett. 108 011109Google Scholar
[9] Vurgaftman I, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Lindle J R, Meyer J R 2011 Nat. Commun. 2 585Google Scholar
[10] Weih R, Kamp M, Hofling S 2013 Appl. Phys. Lett. 102 231123Google Scholar
[11] Kroemer H 2004 Physica E 20 196Google Scholar
[12] Li L H, Zhu J X, Chen L, Davies A G, Linfield E H 2015 Opt. Express 23 2720Google Scholar
[13] Schmitz J, Wagner J, Fuchs F, Herres N, Koidl P, Ralston J D 1995 J. Cryst. Growth 150 858Google Scholar
[14] Jackson E M, Boishin G I, Aifer E H, Bennett B R, Whitman L J 2004 J. Cryst. Growth 270 301Google Scholar
[15] Xie Q H, Van Nostrand J E, Brown J L, Stutz C E 1999 J. Appl. Phys. 86 329Google Scholar
[16] Diaz-Thomas D A, Stepanenko O, Bahriz M, Calvez S, Tournié E, Baranov A N, Almuneau G, Cerutti L 2019 Opt. Express 27 31425Google Scholar
[17] Canedy C L, Abell J, Bewley W W, Aifer E H, Kim C S, Nolde J A, Kim M, Tischler J G, Lindle J R, Jackson E M, Vurgaftman I, Meyer J R 2010 J. Vac. Sci. Technol. B 28 C3G8Google Scholar
[18] Haugan H J, Grazulis L, Brown G J, Mahalingam K, Tomich D H 2004 J. Cryst. Growth 261 471Google Scholar
[19] Bracker A S, Yang M J, Bennett B R, Culbertson J C, Moore W J 2000 J. Cryst. Growth 220 384Google Scholar
[20] 尤明慧, 祝煊宇, 李雪, 李士军, 刘国军 2021 红外与毫米波学报 40 725Google Scholar
You M H, Zhu X Y, Li X, Li S J, Liu G J 2021 J. Infrared Millim. Waves 40 725Google Scholar
[21] https://lase.mer.utexas.edu/mbe.php [2022-07-09]
[22] 马琳, 王玉田, 庄蔚华 1992 红外与毫米波学报 11 37
Ma L, Wang Y T, Zhunag W H 1992 J. Infrared Millim. Waves 11 37
[23] https://lelpersonal.weebly.com/uploads/1/3/4/6/13462265/report.pdf (2022.07.09)
[24] Bauer A, Dallner M, Herrmann A, Lehnhardt T, Kamp M, Höfling S, Worschech L, Forchel A 2010 Nanotechnology 21 455603Google Scholar
[25] Tuttle G, Kroemer H, English J H 1990 J. Appl. Phys. 67 3032Google Scholar
[26] Spitzer J, Höpner A, Kuball M, Cardona M, Jenichen B, Neuroth H, Brar B, Kroemer H 1995 J. Appl. Phys. 77 811Google Scholar
Catalog
Metrics
- Abstract views: 4898
- PDF Downloads: 123
- Cited By: 0