Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable multi-trap optical tweezers based on low loss optical phase change and metalens

Wang Yan Peng Miao Cheng Wei Peng Zheng Cheng Hao Zang Sheng-Yin Liu Hao Ren Xiao-Dong Shuai Yu-Bei Huang Cheng-Zhi Wu Jia-Gui Yang Jun-Bo

Citation:

Controllable multi-trap optical tweezers based on low loss optical phase change and metalens

Wang Yan, Peng Miao, Cheng Wei, Peng Zheng, Cheng Hao, Zang Sheng-Yin, Liu Hao, Ren Xiao-Dong, Shuai Yu-Bei, Huang Cheng-Zhi, Wu Jia-Gui, Yang Jun-Bo
PDF
HTML
Get Citation
  • Novel dual-trap and multi-trap optical tweezers are designed and analyzed, in order to enhance the particle trapping performance of optical tweezers in three-dimensional (3D) space. Firstly, controllable dual-trap optical tweezers are proposed based on metalens and the low-loss optical phase-change material Sb2S3. The horizontal and axial analysis of the optical force acting on two 250-nm-radius SiO2 particles are also carried out. The simulation results show that when Sb2S3 is in the crystalline state, the transverse optical trap stiffness $ {k}_{x} $ of two particles reaches about 25.7 pN/(μm·W) and 37.4 pN/(μm·W), respectively, and the axial optical trap stiffness $ {k}_{z} $ for each particle is about 10.0 pN/(μm·W). When the Sb2S3 is in the amorphous state, both $ {k}_{x} $ and $ {k}_{z} $ are about 1/10 of the counterpart of its crystalline state. As a result, the particle is not stably trapped in the z-direction, and thus enabling the controllability of trapping particles in 3D space. Furthermore, array-type multi-trap optical tweezers are proposed. By regulating the crystal state and noncrystal state of phase-change material Sb2S3, it is convenient to form different combinations of 3D trap schemes. These new optical tweezers can realize 3D space particle trap in various ways, thereby improving the flexibility of optical tweezers, and providing a series of new ways of implementing the metalens-based optical tweezers.
      Corresponding author: Huang Cheng-Zhi, chengzhi@swu.edu.cn ; Wu Jia-Gui, mgh@swu.edu.cn ; Yang Jun-Bo, yangjunbo@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60907003, 61805278, 61875168), the Natural Science Funds for Distinguished Young Scientists of Chongqing, China (Grant No. cstc2021jcyj-jqX0027), the Innovation Research 2035 Pilot Plan of Southwest University, China (Grant No. SWU-XDPY22012), the China Postdoctoral Science Foundation (Grant No. 2018M633704), the Innovation Support Program for Overseas Students in Chongqing, China (Grant No. cx2021008), the Foundation of National University of Defense Technology, China (Grant Nos. JC13-02-13, ZK17-03-01), the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ3001), and the Program for New Century Excellent Talents in University (Grant No. NCET-12-0142).
    [1]

    Guo H L, Li Z Y 2013 Sci. China:Phys. Mech. Astron. 56 2351Google Scholar

    [2]

    Block S M, Goldstein L S B, Schnapp B J 1990 Nature 348 348Google Scholar

    [3]

    Ozcelik A, Rufo J, Guo F, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [4]

    Ding X, Lin S C S, Kiraly B, Yue H, Li S, Chiang I K, Shi J, Benkovic S J, Huang T J 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11105Google Scholar

    [5]

    Ohlinger A, Deak A, Lutich A A, Feldmann J 2012 Phys. Rev. Lett. 108 018101Google Scholar

    [6]

    Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673Google Scholar

    [7]

    Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349Google Scholar

    [8]

    Zhang Y, Min C, Dou X, Wang X, Urbach H P, Somekh M G, Yuan X 2021 Light:Sci. Appl. 10 1Google Scholar

    [9]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [10]

    Ertaş D 1998 Phys. Rev. Lett. 80 1548Google Scholar

    [11]

    Duke T A J, Austin R H 1998 Phys. Rev. Lett. 80 1552Google Scholar

    [12]

    MacDonald M P, Paterson L, Volke-Sepulveda K, J Arlt, W Sibbett, K Dholakia 2002 Science 296 1101Google Scholar

    [13]

    Terray A, Oakey J, Marr D W M 2002 Science 296 1841Google Scholar

    [14]

    Emiliani V, Sanvitto D, Zahid M, Gerbal F, Coppey-Moisan M 2004 Opt. Express 12 3906Google Scholar

    [15]

    Shaw L A, Panas R M, Spadaccini C M, Hopkins J B 2017 Opt. Lett. 42 2862Google Scholar

    [16]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [17]

    MacDonald M P, Spalding G C, Dholakia K 2003 Nature 426 421Google Scholar

    [18]

    Lei M, Yao B, Rupp R A 2006 Opt. Express 14 5803Google Scholar

    [19]

    Zhang Y, Liu Z, Yang J, Yuan L 2012 Opt. Commun. 285 4068Google Scholar

    [20]

    Tam J M, Biran I, Walt D R 2004 Phys. Rev. Lett. 84 4289

    [21]

    Yin S, He F, Kubo W, Wang Q, Frame J, G. Green N, Fang X 2020 Opt. Express 28 38949Google Scholar

    [22]

    Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, Chattham N 2019 Crystals 9 515Google Scholar

    [23]

    Markovich H, Shishkin I I, Hendler N, Ginzburg P 2018 Nano Lett. 18 5024Google Scholar

    [24]

    Wang X, Dai Y, Zhang Y, Min C, and Yuan X 2018 ACS Photonics 5 2945Google Scholar

    [25]

    Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, Tsai D P 2021 Nanomaterials 11 1730Google Scholar

    [26]

    Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N, Zentgraf T 2020 Photonics Res. 8 1435Google Scholar

    [27]

    Ma Y, Rui G, Gu B, Cui Y 2017 Sci. Rep. 7 1Google Scholar

    [28]

    Li T, Xu X, Fu B, Wang S, Li B, Wang Z, Zhu S 2021 Photonics Res. 9 1062Google Scholar

    [29]

    Ikuma Y, Shoji Y, Kuwahara M, Wang X, Kintaka K, Kawashima H, Tanaka D, Tsuda, H 2010 Electron. Lett. 46 1460Google Scholar

    [30]

    Zhang Y, Chou J B, Li J, Li H, Du Q, Yadav A, Zhou S, Shalaginov M Y, Fang Z, Zhong H, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H, Kang M, Gu T, Warner J, Liberman V, Richardson K, Hu J 2019 Nat. Commun. 10 4279Google Scholar

    [31]

    Delaney M, Zeimpekis I, Du H, Yan X, Banakar M, Thomson D J, Hewak D W, Muskens O L 2021 Sci. Adv. 7 eabg3500Google Scholar

    [32]

    Delaney M, Zeimpekis I, Lawson D, Hewak D W, Muskens O L 2020 Adv. Funct. Mater. 30 2002447Google Scholar

    [33]

    Chaumet P C, Nieto-vesperinas M 2000 Opt. Lett. 25 1065Google Scholar

    [34]

    Haraday Y, Asakura T 1996 Opt. Commun. 124 529Google Scholar

    [35]

    Dienerowitz M, Mazilu M, Dholakia K 2008 J. Nanophotonics 2 021875Google Scholar

    [36]

    Novotny L, Bian R X, Xie X S 1997 Phys. Rev. Lett. 79 645Google Scholar

    [37]

    Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Escarra, M D 2021 CLEO: QELS_Fundamental Science (Optica Publishing Group), May, 2021 pJTu3A.8

    [38]

    Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Nguyen V, Sanghrea J, Escarra M D 2022 CLEO: Applications and Technology (Optica Publishing Group), May, 2022 pJTu3A-69

    [39]

    Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J, Xu B 2019 Appl. Sci. 9 4927Google Scholar

    [40]

    Song Y, Liu W, Wang X, Wang F, Wei Z, Meng H, Lin N, Zhang H 2021 Front. Phys. 9 651898Google Scholar

  • 图 1  用于双阱光镊的超透镜结构图 (a) A和B部分的Sb2S3均处于晶态; (b) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (c) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (d) A和B部分的Sb2S3均处于非晶态

    Figure 1.  Structure of dual-trap optical tweezer metalens: (a) Sb2S3 in both parts A and B are in crystalline state; (b) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (c) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (d) Sb2S3 in both parts A and B are in amorphous state.

    图 2  (a)单元结构的结构图, 从上至下分别是高度H为1 μm和不同宽度长度比W/L的Sb2S3, 厚度T为0.03 μm的ITO层和SiO2基底, 单元结构周期P为0.5 μm; (b), (c) Sb2S3处于非晶态和晶态下, 纳米方柱不同宽度长度比W/L的PCE图; (d) Sb2S3纳米方柱L = 220 nm, W = 160 nm时, 相位和PCE与旋转角$ \theta $的关系图

    Figure 2.  (a) Structural diagrams of the unit cell, from top to bottom, Sb2S3 with H of 1 μm and different W/L, ITO layer with T of 0.03 μm, and SiO2 base, and unit cell P of 0.5 μm, respectively; (b), (c) PCE diagrams of the nanosquare pillars with different W/ L when Sb2S3 is in the amorphous and crystalline states, respectively; (d) the plots of phase and PCE versus rotation angle $ \theta $ for Sb2S3 nanosquare pillars with L = 220 nm and W = 160 nm.

    图 3  xz平面和xy (z = 3.3 μm) 平面的电磁场强度分布图 (a), (b) A和B部分的Sb2S3均处于晶态; (c), (d) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (e), (f) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (g), (h) A和B部分的Sb2S3均处于非晶态

    Figure 3.  The electromagnetic field intensity distribution in the xz plane and xy (z = 3.3 μm) plane, respectively: (a), (b) Sb2S3 in both parts A and B are in crystalline state; (c), (d) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (e), (f) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (g) , (h) Sb2S3 in both parts A and B are in amorphous state.

    图 4  施加在粒子上FxFz分别与x位移和z位移的关系图 (a) A和B部分的Sb2S3均处于晶态; (b) A部分的Sb2S3处于晶态, 而B部分的Sb2S3处于非晶态; (c) A部分的Sb2S3处于非晶态, B部分的Sb2S3处于晶态; (d) A和B部分的Sb2S3均处于非晶态

    Figure 4.  Plots of Fx and Fz for the particle versus x displacement and z displacement, respectively: (a) Sb2S3 in both parts A and B are in crystalline state; (b) Sb2S3 in part A is in crystalline state, while Sb2S3 in part B is in amorphous state; (c) Sb2S3 in part A is in amorphous state, and Sb2S3 in part B is in crystalline state; (d) Sb2S3 in both parts A and B are in amorphous state.

    图 5  施加在粒子上Fyy位移关系图 (a) A部分的Sb2S3分别均处于晶态和非晶态; (b) B部分的Sb2S3分别均处于晶态和非晶态

    Figure 5.  Plots of Fy for the particle versus y displacement: (a) Sb2S3 in part A is in the crystalline and amorphous states, respectively; (b) Sb2S3 in part A is in the crystalline and amorphous states, respectively.

    图 6  当A和B部分的Sb2S3为晶态时FxFz的势阱深度图 (a), (b) Fx的势阱深度Ux图; (c), (d) Fz的势阱深度Uz

    Figure 6.  Potential depth plots of Fx and Fz when parts A and B are crystalline state: (a), (b) potential depth Ux plots of Fx; (c), (d) potential depth Uz plots of Fz.

    图 7  (a), (b) 用于多阱光镊的超透镜结构图, (a) 中间部分的Sb2S3处于非晶态, 其余部分的Sb2S3均处于晶态, (b)所有部分的Sb2S3均处于晶态; (c), (d) 分别为(a)状态下xy (z = 3.3 μm)平面和xz平面的电磁场强度分布图; (e), (f) 分别为(b)状态下xy (z = 3.3 μm)平面和xz平面的电磁场强度分布图

    Figure 7.  (a), (b) Structure of the multi-trap optical tweezer metalens, (a) Sb2S3 in the middle part is in the amorphous state, and Sb2S3 in the rest parts are in the crystalline state, (b) Sb2S3 in all parts are in the crystalline state; (c), (d) the electromagnetic field intensity distributions in the xy (z = 3.3 μm) plane and xz plane in (a) state, respectively; (e), (f) the electromagnetic field intensity distributions of xy (z = 3.3 μm) plane and xz plane in (b) state, respectively.

    图 8  超透镜中间部分的Sb2S3在晶态和非晶态下 (a) 粒子受到的Fxx位移的关系; (b) 粒子受到的Fzz位移的关系; (c), (d) 超透镜中间部分的Sb2S3在晶态下状态下FxFz的势阱深度图

    Figure 8.  Sb2S3 in the middle part of the multi-trap optical tweezer metalens under the crystalline and amorphous states: (a) Fx of particles versus x displacement; (b) Fz of particles versus z displacement; (c), (d) potential depth plots of Fx and Fz for Sb2S3 in the middle part of the multi-trap optical tweezer metalens in the crystalline state.

    图 9  超透镜其中6种聚焦状态的xy (z = 3.3 μm)平面和xz平面电磁场强度分布图来实现不同形状的捕获阵列 (a)—(c)和(g)—(i)为xy (z = 3.3 μm)平面强度分布图; (d)—(f)和(j)—(l)为对应的xz平面强度分布图

    Figure 9.  Electromagnetic field intensity distribution of xy (z = 3.3 μm) plane and xz plane for six focusing states of the multi-trap optical tweezer metalens to achieve different shapes of trapping arrays: (a)–(c) and (g)–(i) are xy (z = 3.3 μm) planar intensity distributions; (d)–(f) and (j)–(l) are the corresponding xz planar intensity distributions.

  • [1]

    Guo H L, Li Z Y 2013 Sci. China:Phys. Mech. Astron. 56 2351Google Scholar

    [2]

    Block S M, Goldstein L S B, Schnapp B J 1990 Nature 348 348Google Scholar

    [3]

    Ozcelik A, Rufo J, Guo F, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [4]

    Ding X, Lin S C S, Kiraly B, Yue H, Li S, Chiang I K, Shi J, Benkovic S J, Huang T J 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11105Google Scholar

    [5]

    Ohlinger A, Deak A, Lutich A A, Feldmann J 2012 Phys. Rev. Lett. 108 018101Google Scholar

    [6]

    Li T, Kheifets S, Medellin D, Raizen M G 2010 Science 328 1673Google Scholar

    [7]

    Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349Google Scholar

    [8]

    Zhang Y, Min C, Dou X, Wang X, Urbach H P, Somekh M G, Yuan X 2021 Light:Sci. Appl. 10 1Google Scholar

    [9]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [10]

    Ertaş D 1998 Phys. Rev. Lett. 80 1548Google Scholar

    [11]

    Duke T A J, Austin R H 1998 Phys. Rev. Lett. 80 1552Google Scholar

    [12]

    MacDonald M P, Paterson L, Volke-Sepulveda K, J Arlt, W Sibbett, K Dholakia 2002 Science 296 1101Google Scholar

    [13]

    Terray A, Oakey J, Marr D W M 2002 Science 296 1841Google Scholar

    [14]

    Emiliani V, Sanvitto D, Zahid M, Gerbal F, Coppey-Moisan M 2004 Opt. Express 12 3906Google Scholar

    [15]

    Shaw L A, Panas R M, Spadaccini C M, Hopkins J B 2017 Opt. Lett. 42 2862Google Scholar

    [16]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [17]

    MacDonald M P, Spalding G C, Dholakia K 2003 Nature 426 421Google Scholar

    [18]

    Lei M, Yao B, Rupp R A 2006 Opt. Express 14 5803Google Scholar

    [19]

    Zhang Y, Liu Z, Yang J, Yuan L 2012 Opt. Commun. 285 4068Google Scholar

    [20]

    Tam J M, Biran I, Walt D R 2004 Phys. Rev. Lett. 84 4289

    [21]

    Yin S, He F, Kubo W, Wang Q, Frame J, G. Green N, Fang X 2020 Opt. Express 28 38949Google Scholar

    [22]

    Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, Chattham N 2019 Crystals 9 515Google Scholar

    [23]

    Markovich H, Shishkin I I, Hendler N, Ginzburg P 2018 Nano Lett. 18 5024Google Scholar

    [24]

    Wang X, Dai Y, Zhang Y, Min C, and Yuan X 2018 ACS Photonics 5 2945Google Scholar

    [25]

    Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, Tsai D P 2021 Nanomaterials 11 1730Google Scholar

    [26]

    Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N, Zentgraf T 2020 Photonics Res. 8 1435Google Scholar

    [27]

    Ma Y, Rui G, Gu B, Cui Y 2017 Sci. Rep. 7 1Google Scholar

    [28]

    Li T, Xu X, Fu B, Wang S, Li B, Wang Z, Zhu S 2021 Photonics Res. 9 1062Google Scholar

    [29]

    Ikuma Y, Shoji Y, Kuwahara M, Wang X, Kintaka K, Kawashima H, Tanaka D, Tsuda, H 2010 Electron. Lett. 46 1460Google Scholar

    [30]

    Zhang Y, Chou J B, Li J, Li H, Du Q, Yadav A, Zhou S, Shalaginov M Y, Fang Z, Zhong H, Roberts C, Robinson P, Bohlin B, Ríos C, Lin H, Kang M, Gu T, Warner J, Liberman V, Richardson K, Hu J 2019 Nat. Commun. 10 4279Google Scholar

    [31]

    Delaney M, Zeimpekis I, Du H, Yan X, Banakar M, Thomson D J, Hewak D W, Muskens O L 2021 Sci. Adv. 7 eabg3500Google Scholar

    [32]

    Delaney M, Zeimpekis I, Lawson D, Hewak D W, Muskens O L 2020 Adv. Funct. Mater. 30 2002447Google Scholar

    [33]

    Chaumet P C, Nieto-vesperinas M 2000 Opt. Lett. 25 1065Google Scholar

    [34]

    Haraday Y, Asakura T 1996 Opt. Commun. 124 529Google Scholar

    [35]

    Dienerowitz M, Mazilu M, Dholakia K 2008 J. Nanophotonics 2 021875Google Scholar

    [36]

    Novotny L, Bian R X, Xie X S 1997 Phys. Rev. Lett. 79 645Google Scholar

    [37]

    Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Escarra, M D 2021 CLEO: QELS_Fundamental Science (Optica Publishing Group), May, 2021 pJTu3A.8

    [38]

    Padmanabha S, Oguntoye I O, Frantz J, Myers J, Bekele R, Clabeau A, Nguyen V, Sanghrea J, Escarra M D 2022 CLEO: Applications and Technology (Optica Publishing Group), May, 2022 pJTu3A-69

    [39]

    Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J, Xu B 2019 Appl. Sci. 9 4927Google Scholar

    [40]

    Song Y, Liu W, Wang X, Wang F, Wei Z, Meng H, Lin N, Zhang H 2021 Front. Phys. 9 651898Google Scholar

  • [1] Xu Ping, Li Xiong-Chao, Xiao Yu-Fei, Yang Tuo, Zhang Xu-Lin, Huang Hai-Xuan, Wang Meng-Yu, Yuan Xia, Xu Hai-Dong. Design and research of long-infrared dual-wavelength confocal metalens. Acta Physica Sinica, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [2] Bai Jing, Ge Cheng-Xian, He Lang, Liu Xuan, Wu Zhen-Sen. Analysis of trapping force exerted on multi-layered chiral sphere induced by laser sheet. Acta Physica Sinica, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [3] Ding Ji-Fei, Liu Wen-Bing, Li Han-Hui, Luo Yi, Xie Chen-Kai, Huang Li-Rong. Design and fabrication of off-axis meta-lens with large focal depth. Acta Physica Sinica, 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [4] Wang Yue, Liang Yan-Sheng, Yan Shao-Hui, Cao Zhi-Liang, Cai Ya-Nan, Zhang Yan, Yao Bao-Li, Lei Ming. Axial multi-particle trapping and real-time direct observation. Acta Physica Sinica, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [5] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [6] Huang Xue-Feng, Li Sheng-Ji, Zhou Dong-Hui, Zhao Guan-Jun, Wang Guan-Qing, Xu Jiang-Rong. Trap, ignition, and diffusion combustion characteristics of active carbon micro-particles at a meso-scale studied by optical tweezers. Acta Physica Sinica, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [7] Zhang Zhi-Gang, Liu Feng-Rui, Zhang Qing-Chuan, Cheng Teng, Wu Xiao-Ping. Trapping of multiple particles by space speckle field and infrared microscopy. Acta Physica Sinica, 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [8] Zhang Zhi-Gang, Liu Feng-Rui, Zhang Qing-Chuan, Cheng Teng, Gao Jie, Wu Xiao-Ping. Infrared microscopic observation of trapped absorbing particles. Acta Physica Sinica, 2013, 62(20): 208702. doi: 10.7498/aps.62.208702
    [9] Ren Hong-Liang. Design and error analysis for optical tweezers based on finite conjugate microscope. Acta Physica Sinica, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [10] Zhou Dan-Dan, Ren Yu-Xuan, Liu Wei-Wei, Gong Lei, Li Yin-Mei. Calibration of optical tweezers using time of flight method. Acta Physica Sinica, 2012, 61(22): 228702. doi: 10.7498/aps.61.228702
    [11] Ren Hong-Liang, Ding Pan-Feng, Li Xiao-Yan. Influences of axial position manipulation and misalignments of optical elements on radial trap position manipulation. Acta Physica Sinica, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [12] Hu Geng-Jun, Li Jing, Long Qian, Tao Tao, Zhang Gong-Xuan, Wu Xiao-Ping. FDTD numerical simulation of the trapping force of microspherein single optical tweezers. Acta Physica Sinica, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [13] Wang Xia, Wang Zi-Xia, Lü Hao, Zhao Qiu-Ling. Short-cut transformation from one-dimensional to three-dimensional interference pattern by holographic simulation. Acta Physica Sinica, 2010, 59(7): 4656-4660. doi: 10.7498/aps.59.4656
    [14] Han Guo-Xia, Han Yi-Ping. Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam. Acta Physica Sinica, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [15] Yang Hao, Feng Guo-Ying, Zhu Qi-Hua, Zhang Da-Yong, Zhou Shou-Huan. Study on trapping force of focused optical field on the microsphere with the FDTD method. Acta Physica Sinica, 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [16] Zeng Xia-Hui, Wu Feng-Tie, Liu Lan. The description of bottle beam based on the interferential theory. Acta Physica Sinica, 2007, 56(2): 791-797. doi: 10.7498/aps.56.791
    [17] Han Yi-Ping, Du Yun-Gang, Zhang Hua-Yong. Radiation trapping forces acting on a two-layered spherical particle in a Gaussian beam. Acta Physica Sinica, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [18] Xu Chun-Hua, Liu Chun-Xiang, Guo Hong-Lian, Li Zhao-Lin, Jiang Yu-Qiang, Zhang Dao-Zhong, Yuan Ming. Photosensitive breaking of fluorescent labeled microtubules and its mechanism. Acta Physica Sinica, 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [19] Zhang Yan-Li, Zhao Yi-Qiong, Zhan Qi-Wen, Li Yong-Ping. Study of 3D optical chain with highly focused vector beam. Acta Physica Sinica, 2006, 55(3): 1253-1258. doi: 10.7498/aps.55.1253
    [20] Jiang Yu-Qiang, Guo Hong-Lian, Liu Chun-Xiang, Li Zhao-Lin, Cheng Bing-Ying, Zhang Dao-Zhong, Jia Suo-Tang. Trapping stiffness measurement with brownian motion analysis method at low sampling frequency. Acta Physica Sinica, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
Metrics
  • Abstract views:  2454
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2022
  • Accepted Date:  13 October 2022
  • Available Online:  01 November 2022
  • Published Online:  20 January 2023

/

返回文章
返回