Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of passive particle shape on effective force in active bath

Ning Lu-Hui Zhang Xue Yang Ming-Cheng Zheng Ning Liu Peng Peng Yi

Citation:

Effect of passive particle shape on effective force in active bath

Ning Lu-Hui, Zhang Xue, Yang Ming-Cheng, Zheng Ning, Liu Peng, Peng Yi
PDF
HTML
Get Citation
  • In active matter, the effective force between passive objects is crucial for their structure and dynamics, which is the basis for understanding the complex behaviors within active systems. Unlike equilibrium states, the factors such as the surface configuration, size, and confinement strength significantly influence the effective forces between passive particles. Previous studies have shown that the shapes of passive particles affect the aggregation of active particles, leading to different forces experienced by passive particles with different shapes. However, recently, a long-range attractive force between passive platelike particles, caused by the bacterial flow field instead of the direct bacterium-plate collisions in active bacterial suspensions, has been found. This raises an intriguing question: how does hydrodynamics affect the forces on passive particles of different shapes in different ways?In this work, we investigate the effective forces exerted on passive spherical and plate-like particles immersed in bacterial suspensions by optical-tweezers experiments. The effective force between passive particles can be calculated from the formula, $ {F_{{\text{eff}}}} = {\text{ }}k\left\langle {\Delta d} \right\rangle /2 $, where $ \left\langle {\Delta d} \right\rangle $ represents the difference in distance between the passive particles in the bacterial bath and those in the solution without bacteria, $ k $ is the effective stiffness of optical traps. The $ {{{F}}}_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} > 0 $ indicates a repulsive force between passive particles, and the $ {F_{{\text{eff}}}} \lt {\text{ }}0 $ represents an effective attractive force between passive particles. Our results demonstrate that the passive spherical particles experience short-range repulsion, while plate-like particles are subjected to long-range attraction. This highlights the substantial effect of particle shape on their effective forces.The forces on passive particles are mainly attributed to two factors: direct bacterium-particle collisions and the bacterial flow field. The analysis of the bacterial concentration and orientation distribution around passive particles reveals that for spherical particles, the concentration of bacteria between particles is higher than that outside the particles, but there is almost no difference in the orientation order between bacteria inside and outside the particles. This suggests that the effective repulsion between spherical particles is mainly due to the direct bacterial collisions. Conversely, for plate-like particles, the long-range attraction is primarily influenced by the bacterial flow field rather than their direct collisions, which is evidenced by the higher bacterial density and orientation order inside the two plates compared with those outside the two plates. This study provides strong evidence that the effective force between passive particles is shape dependent in active bath, and offers new insights into controlling active-directed assembly.
      Corresponding author: Zheng Ning, ningzheng@bit.edu.cn ; Liu Peng, liupeng@bit.edu.cn ; Peng Yi, pengy@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304245, 12374205, 12074406), the National Key Laboratory of Petroleum Resources and Engineering (Grant No. PRE/DX-2407), the Beijing National Laboratory for Condensed Matter Physics, China (Grant No. 2023BNLCMPKF014), and the Science Foundation of China University of Petroleum-Beijing, China (Grant No. 2462023YJRC031).
    [1]

    Zhang H P, Be’er A, Florin E L, Swinney H L 2010 Proc. Natl. Acad. Sci. U. S. A. 107 13626Google Scholar

    [2]

    Karamouzas I, Skinner B, Guy S J 2014 Phys. Rev. Lett. 113 238701Google Scholar

    [3]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339 936Google Scholar

    [4]

    Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T 2013 Phys. Rev. Lett. 110 238301Google Scholar

    [5]

    Petroff A P, Wu X L, Libchaber A 2015 Phys. Rev. Lett. 114 158102Google Scholar

    [6]

    Bechinger C, Leonardo R Di, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [7]

    Needleman D, Dogic Z 2017 Nat. Rev. Mater. 2 17048Google Scholar

    [8]

    Gonzalez-Rodriguez D, Guevorkian K, Douezan S, Brochart-Wyart F 2012 Science 338 910Google Scholar

    [9]

    Nelson B J, Kaliakatsos I K, Abbott J J 2010 Annu. Rev. Biomed. Eng. 12 55Google Scholar

    [10]

    Liu P, Ye S M, Ye F F, Chen K, Yang M C 2020 Phys. Rev. Lett. 124 158001Google Scholar

    [11]

    Ni R, Cohen Stuart M A, Bolhuis P G 2015 Phys. Rev. Lett. 114 018302Google Scholar

    [12]

    Ray D, Reichhardt C, Olson Reichhardt C J 2014 Phys. Rev. E 90 013019Google Scholar

    [13]

    Harder J, Mallory S A, Tung C, Valeriani C, Cacciuto A 2014 J. Chem. Phys. 141 194901Google Scholar

    [14]

    Leite L R, Lucena D, Potiguar F Q, Ferreira W P 2016 Phys. Rev. E 94 062602Google Scholar

    [15]

    Feng F, Lei T, Zhao N R 2021 Phys. Rev. E 103 022604Google Scholar

    [16]

    Paul S, Jayaram A, Narinder N, Speck T, Bechinger C 2022 Phys. Rev. Lett. 129 058001Google Scholar

    [17]

    Ning L H, Lou X, Ma Q L, Yang Y C, Luo N, Chen K, Meng F L, Zhou X, Yang M C, Peng Y 2023 Phys. Rev. Lett. 131 158301Google Scholar

    [18]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 5 288Google Scholar

    [19]

    Pesce G, Jones P H, Maragò O M, Volpe G 2020 Eur. Phys. J. Plus 135 949Google Scholar

    [20]

    Volpe G, Maragò O M, Rubinsztein-Dunlop H, et al. 2023 J. Phys. Photonics 5 022501Google Scholar

    [21]

    Bustamante C, Alexander L, Maciuba K, Kaiser C M 2020 Annu. Rev. Biochem. 89 443Google Scholar

    [22]

    Baek Y, Solon A P, Xu X P, Nikola N, Kafri Y 2018 Phys. Rev. Lett. 120 058002Google Scholar

    [23]

    Walter J M, Greenfield D, Bustamante C, Liphardt J 2007 Proc. Natl. Acad. Sci. U. S. A. 104 2408Google Scholar

    [24]

    Peng Y, Liu Z Y, Cheng X 2021 Sci. Adv. 7 eabd1240Google Scholar

    [25]

    Hernandez C J, Mason T G 2007 J. Phys. Chem. C 111 4477Google Scholar

    [26]

    Zheng Z Y, Han Y L 2010 J. Chem. Phys. 133 124509Google Scholar

    [27]

    Drescher K, Dunkel J, Cisneros L H, Ganguly S, Goldstein R E 2011 Proc. Natl. Acad. Sci. U. S. A. 108 10940Google Scholar

    [28]

    Lauga1 E, Powers T R 2009 Rep. Prog. Phys. 72 096601Google Scholar

  • 图 1  光镊实验测量惰性粒子间有效作用力的示意图 (a)使用光学势阱将两个球形聚苯乙烯胶体粒子(紫色圆)固定在两盖玻片(灰色厚实线)之间; (b)使用多个光学势阱将两平行板(蓝色方块)固定在两盖玻片之间; 实验观测平面设置在光镊的光腰位置在图中由黑色虚线标出

    Figure 1.  Schematic diagram of optical tweezers measuring the effective force between passive particles: (a) Two spherical PS particles (purple circles) are trapped between two cover glasses (thick grey lines); (b) two parallel plates (blue squares) are trapped between two cover slides using multiple optical potential wells. The observation plane marked by the black dashed line in (a), (b) is set at the optical waist of the optical tweezers.

    图 2  在无细菌的超纯水溶液中, 处于光学势阱中的球形粒子在y方向上位移$ \Delta y $的概率分布图, 蓝色虚线是(1)式拟合的最佳线

    Figure 2.  Displacement distribution of spherical particles trapped by tweezers in the y direction in the bacteria-free suspension. The blue dashed line represents the best fit to the Eq. (1).

    图 3  不同细菌浓度ϕ时惰性粒子间的有效相互作用力与惰性粒子间距离d的关系 (a) 板状粒子间(ϕ = 0.07, 0.13); (b)球形PS粒子间(ϕ = 0.05, 0.12); 图中的符号和误差棒分别表示由4—16次独立测量得到的平均值和标准差

    Figure 3.  Effective force between two passive particles as a function of the distance d of them at different bacterial concentration ϕ: (a) Two passive plates (ϕ = 0.07, 0.13); (b) two spherical PS particles (ϕ = 0.05, 0.12). The symbols and error bars represent the mean and standard deviation calculated over 4–16 independent measurements, respectively.

    图 4  惰性粒子附近, 细菌的相对局域密度$ {\rho _{\text{r}}} $和局域取向有序性参数Q的分布, 其中红色三角形和蓝色正方形分别表示$ {\rho _{\text{r}}} $和Q, 黑色阴影圆形和板状区域分别表示球形和板状粒子的相对位置; (a)—(d)对应球形粒子, 其间距分别为8.68, 10.58, 15.47, 19.35 μm; (e)—(h)对应板状粒子, 其间距分别为8.95, 14.38, 21.89, 33.29 μm

    Figure 4.  Distribution of relative density of bacteria $ {\rho _{\text{r}}} $ (red triangles) and local orientation order Q (blue squares) around two passive spherical particles (black shaded circles) and plate-like particles (black plate-like area): (a)–(d) Correspond to spherical particles with the distances of 8.68, 10.58, 15.47, and 19.35 μm, respectively; (e)–(h) correspond to plates with the distances of 8.95, 14.38, 21.89, and 33.29 μm, respectively.

  • [1]

    Zhang H P, Be’er A, Florin E L, Swinney H L 2010 Proc. Natl. Acad. Sci. U. S. A. 107 13626Google Scholar

    [2]

    Karamouzas I, Skinner B, Guy S J 2014 Phys. Rev. Lett. 113 238701Google Scholar

    [3]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339 936Google Scholar

    [4]

    Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T 2013 Phys. Rev. Lett. 110 238301Google Scholar

    [5]

    Petroff A P, Wu X L, Libchaber A 2015 Phys. Rev. Lett. 114 158102Google Scholar

    [6]

    Bechinger C, Leonardo R Di, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [7]

    Needleman D, Dogic Z 2017 Nat. Rev. Mater. 2 17048Google Scholar

    [8]

    Gonzalez-Rodriguez D, Guevorkian K, Douezan S, Brochart-Wyart F 2012 Science 338 910Google Scholar

    [9]

    Nelson B J, Kaliakatsos I K, Abbott J J 2010 Annu. Rev. Biomed. Eng. 12 55Google Scholar

    [10]

    Liu P, Ye S M, Ye F F, Chen K, Yang M C 2020 Phys. Rev. Lett. 124 158001Google Scholar

    [11]

    Ni R, Cohen Stuart M A, Bolhuis P G 2015 Phys. Rev. Lett. 114 018302Google Scholar

    [12]

    Ray D, Reichhardt C, Olson Reichhardt C J 2014 Phys. Rev. E 90 013019Google Scholar

    [13]

    Harder J, Mallory S A, Tung C, Valeriani C, Cacciuto A 2014 J. Chem. Phys. 141 194901Google Scholar

    [14]

    Leite L R, Lucena D, Potiguar F Q, Ferreira W P 2016 Phys. Rev. E 94 062602Google Scholar

    [15]

    Feng F, Lei T, Zhao N R 2021 Phys. Rev. E 103 022604Google Scholar

    [16]

    Paul S, Jayaram A, Narinder N, Speck T, Bechinger C 2022 Phys. Rev. Lett. 129 058001Google Scholar

    [17]

    Ning L H, Lou X, Ma Q L, Yang Y C, Luo N, Chen K, Meng F L, Zhou X, Yang M C, Peng Y 2023 Phys. Rev. Lett. 131 158301Google Scholar

    [18]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 5 288Google Scholar

    [19]

    Pesce G, Jones P H, Maragò O M, Volpe G 2020 Eur. Phys. J. Plus 135 949Google Scholar

    [20]

    Volpe G, Maragò O M, Rubinsztein-Dunlop H, et al. 2023 J. Phys. Photonics 5 022501Google Scholar

    [21]

    Bustamante C, Alexander L, Maciuba K, Kaiser C M 2020 Annu. Rev. Biochem. 89 443Google Scholar

    [22]

    Baek Y, Solon A P, Xu X P, Nikola N, Kafri Y 2018 Phys. Rev. Lett. 120 058002Google Scholar

    [23]

    Walter J M, Greenfield D, Bustamante C, Liphardt J 2007 Proc. Natl. Acad. Sci. U. S. A. 104 2408Google Scholar

    [24]

    Peng Y, Liu Z Y, Cheng X 2021 Sci. Adv. 7 eabd1240Google Scholar

    [25]

    Hernandez C J, Mason T G 2007 J. Phys. Chem. C 111 4477Google Scholar

    [26]

    Zheng Z Y, Han Y L 2010 J. Chem. Phys. 133 124509Google Scholar

    [27]

    Drescher K, Dunkel J, Cisneros L H, Ganguly S, Goldstein R E 2011 Proc. Natl. Acad. Sci. U. S. A. 108 10940Google Scholar

    [28]

    Lauga1 E, Powers T R 2009 Rep. Prog. Phys. 72 096601Google Scholar

  • [1] Shi Zi-Xuan, Jin Yan, Jin Yi-Yang, Tian Wen-De, Zhang Tian-Hui, Chen Kang. Gel transition of active triblock copolymers. Acta Physica Sinica, 2024, 73(17): 170501. doi: 10.7498/aps.73.20240796
    [2] Jin Yan, Shi Zi-Xuan, Jin Yi-Yang, Tian Wen-De, Zhang Tian-Hui, Chen Kang. Finite porous medium induced aggregation behavior of active dumbbells. Acta Physica Sinica, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [3] Wang Yan, Peng Miao, Cheng Wei, Peng Zheng, Cheng Hao, Zang Sheng-Yin, Liu Hao, Ren Xiao-Dong, Shuai Yu-Bei, Huang Cheng-Zhi, Wu Jia-Gui, Yang Jun-Bo. Controllable multi-trap optical tweezers based on low loss optical phase change and metalens. Acta Physica Sinica, 2023, 72(2): 027801. doi: 10.7498/aps.72.20221794
    [4] Wang Jing, Jiao Yang, Tian Wen-De, Chen Kang. Phase separation phenomenon in mixed system composed of low- and high-inertia active particles. Acta Physica Sinica, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [5] Gao Yi-Wen, Wang Ying, Tian Wen-De, Chen Kang. Dynamic behavior of active polymer chain in spatially-modulated driven field. Acta Physica Sinica, 2022, 71(24): 240501. doi: 10.7498/aps.71.20221367
    [6] Bai Jing, Ge Cheng-Xian, He Lang, Liu Xuan, Wu Zhen-Sen. Analysis of trapping force exerted on multi-layered chiral sphere induced by laser sheet. Acta Physica Sinica, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [7] Zhong Ying, Shi Xia-Qing. Collective behaviors of self-propelled rods under semi-flexible elastic confinement. Acta Physica Sinica, 2020, 69(8): 080507. doi: 10.7498/aps.69.20200561
    [8] Wang Yue, Liang Yan-Sheng, Yan Shao-Hui, Cao Zhi-Liang, Cai Ya-Nan, Zhang Yan, Yao Bao-Li, Lei Ming. Axial multi-particle trapping and real-time direct observation. Acta Physica Sinica, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [9] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [10] Chen Lei-Ming. Hydrodynamic theory of dry active matter. Acta Physica Sinica, 2016, 65(18): 186401. doi: 10.7498/aps.65.186401
    [11] Huang Xue-Feng, Li Sheng-Ji, Zhou Dong-Hui, Zhao Guan-Jun, Wang Guan-Qing, Xu Jiang-Rong. Trap, ignition, and diffusion combustion characteristics of active carbon micro-particles at a meso-scale studied by optical tweezers. Acta Physica Sinica, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [12] Ren Hong-Liang. Design and error analysis for optical tweezers based on finite conjugate microscope. Acta Physica Sinica, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [13] Zhou Dan-Dan, Ren Yu-Xuan, Liu Wei-Wei, Gong Lei, Li Yin-Mei. Calibration of optical tweezers using time of flight method. Acta Physica Sinica, 2012, 61(22): 228702. doi: 10.7498/aps.61.228702
    [14] Ren Hong-Liang, Ding Pan-Feng, Li Xiao-Yan. Influences of axial position manipulation and misalignments of optical elements on radial trap position manipulation. Acta Physica Sinica, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [15] Hu Geng-Jun, Li Jing, Long Qian, Tao Tao, Zhang Gong-Xuan, Wu Xiao-Ping. FDTD numerical simulation of the trapping force of microspherein single optical tweezers. Acta Physica Sinica, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [16] Han Guo-Xia, Han Yi-Ping. Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam. Acta Physica Sinica, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [17] Yang Hao, Feng Guo-Ying, Zhu Qi-Hua, Zhang Da-Yong, Zhou Shou-Huan. Study on trapping force of focused optical field on the microsphere with the FDTD method. Acta Physica Sinica, 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [18] Zhang Yan-Li, Zhao Yi-Qiong, Zhan Qi-Wen, Li Yong-Ping. Study of 3D optical chain with highly focused vector beam. Acta Physica Sinica, 2006, 55(3): 1253-1258. doi: 10.7498/aps.55.1253
    [19] Han Yi-Ping, Du Yun-Gang, Zhang Hua-Yong. Radiation trapping forces acting on a two-layered spherical particle in a Gaussian beam. Acta Physica Sinica, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [20] Jiang Yu-Qiang, Guo Hong-Lian, Liu Chun-Xiang, Li Zhao-Lin, Cheng Bing-Ying, Zhang Dao-Zhong, Jia Suo-Tang. Trapping stiffness measurement with brownian motion analysis method at low sampling frequency. Acta Physica Sinica, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
Metrics
  • Abstract views:  1444
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2024
  • Accepted Date:  03 June 2024
  • Available Online:  26 June 2024
  • Published Online:  05 August 2024

/

返回文章
返回