Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Accurate measurement of trace H2S concentration based on cavity ring-down absorption spectroscopy under CO2/CO disturbance

Xiong Feng Peng Zhi-Min Wang Zhen Ding Yan-Jun Lü Jun-Fu Du Yan-Jun

Citation:

Accurate measurement of trace H2S concentration based on cavity ring-down absorption spectroscopy under CO2/CO disturbance

Xiong Feng, Peng Zhi-Min, Wang Zhen, Ding Yan-Jun, Lü Jun-Fu, Du Yan-Jun
PDF
HTML
Get Citation
  • Since H2S is a corrosive and toxic gas pollutant, the accurate measurement of its concentration is significant. However, in the practical industrial processes, it is difficult to implement because of the disturbance caused by other emissions such as CO2 and CO. Therefore, in this work, the concentration of H2S, CO2 and CO are measured simultaneously based on cavity ring-down spectroscopy (CRDS) as a viable alternative to measure the concentration of H2S accurately when CO2 and CO exist. First, the wavelength of mixed gas within a range of 6336–6339 cm–1 is selected as the target region where the spectral line intensity of H2S is stronger than 10 times that of CO2 or CO and the water absorption is extremely weak. Second, the influence of the sampling length (Tm) on the accuracy of the ring-down time is analyzed by evaluating average (accuracy), standard deviation (precision) and consumption time (speed). Third, the experiments are carried out at different pressures in order to obtain the optimal pressure condition. Fourth, the concentration of trace H2S is measured when the disturbances caused by CO2 or CO are added, and the error of the measured concentration is analyzed. Finally, the detection limit of CRDS-based system is calculated to be 6.9 ppb by analyzing the SNR of four groups of low concentration H2S spectra, while the lower limit of detection of CRDS-based system is calculated to be 2 ppb by analyzing the Allan variance of long-term data. The measured concentration and its desired value show a good linearity at different dilution ratios. Both the high linearity and the low detection limit of H2S indicate the effectiveness of the CRDS-based measurement system to measure H2S when CO2 and CO exist. The successful application of the CRDS-based system to the measurement of H2S shows its promising prospect in gas concentration measurement for practical industrial processes.
      Corresponding author: Du Yan-Jun, YanjunDu@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51906120) and the National Key R&D Program of China (Grant No. 2019YFB20060002)
    [1]

    Glass D C, 1990 Ann. Occup. Hyg. 34 323

    [2]

    Jappinen P, Vilkka V, Marttila O, Haahtela T 1990 Br. J. Ind. Med. 47 824

    [3]

    Duong T X, Suruda A J, Maier L A 2001 Am. J. Ind. Med. 40 221Google Scholar

    [4]

    Steinsmo. U, Rogne. T, Drugli. J 1997 Corrosion 53 955Google Scholar

    [5]

    杨建设, 尹爱国, 杨孝军, 钟丽霞 2005 水土保持研究 12 85Google Scholar

    Yang J S, Yin A G, Yang X J, Zhong L X 2005 Res. Soil. Water. Conserv. 12 85Google Scholar

    [6]

    Wang Y, Wang B, He S, Zhang L, Xing X, Li H, Lu M 2022 J. Nat. Gas Sci. Eng. 100 104477Google Scholar

    [7]

    许伟刚, 谭厚章, 刘原一, 魏博, 惠世恩 2018 中国电力 51 113

    Xv W G, Tan H Z, Liu Y Y, Wei B, Hui S H 2018 Electric Power 51 113

    [8]

    王毅斌, 张思聪, 谭厚章, 林国辉, 王萌, 卢旭超, 杨浩 2021 中国电力 54 118

    Wang Y B, Zhang S C, Tan H Z, Lin G H, Wang M, Lu X C, Yang H 2021 Electric Power 54 118

    [9]

    Pandey S K, Kim K 2009 Environ. Sci. Technol. 43 3020Google Scholar

    [10]

    Kim K 2011 Atmos. Environ. 45 3366Google Scholar

    [11]

    Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar

    [12]

    Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar

    [13]

    Mathieu O, Mulvihill C, Petersen E L 2017 P. Combust. Inst. 36 4019Google Scholar

    [14]

    张杨, 范颖, 王哲, 陈文亮 2017 电子测量与仪器学报 31 1943

    Zhang Y, Fan Y, Wang Z, Chen W L 2017 J. Electron. Measurem. Instrum. 31 1943

    [15]

    何岸, 陈雅茜, 郭敬远, 胡雪蛟, 江海峰 2022 矿业安全与环保 49 113

    He A, Chen Y X, Guo J, Hu X J, Jiang H F 2022 Mining Safety Envir. Prot. 49 113

    [16]

    Guo Y, Qiu X, Li N, Feng S, Cheng T, Liu Q, He Q, Kan R, Yang H, Li C 2020 Infrared Phys. Techn. 105 103153Google Scholar

    [17]

    王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏 2022 物理学报 71 184205Google Scholar

    Wang Z, Du Y J, Ding Y J, Lu J F, Peng Z M 2022 Acta Phys. Sin. 71 184205Google Scholar

    [18]

    彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145

    Peng Z, He S L, Zhou P L, Wang Z, Du Y J, Ding Y J, Wu Y X, Lv J F 2022 Thermal Powergen. 51 145

    [19]

    Keefe O A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [20]

    Berden G, Engeln R 2009 Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiltshire: Wiley-Blackwell) pp7–10

    [21]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [22]

    Ball S M, Jones R L 2003 Chem. Rev. 103 5239Google Scholar

    [23]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [24]

    Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar

    [25]

    Pandaa B, Maithania S, Pradhana M 2020 Chem. Phys. 535 110769

    [26]

    Matheson I B C 1987 Instrum. Sci. Technol. 16 345Google Scholar

    [27]

    Halmer D, von Basum G, Hering P, Mürtz M 2004 Rev. Sci. Instrum. 75 2187Google Scholar

    [28]

    Galatry L 1961 Phys. Rev. 122 1218Google Scholar

    [29]

    Dicke R H 1953 Phy. Rev. 89 472Google Scholar

    [30]

    Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Ra. 105 525Google Scholar

    [31]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar

    [32]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Y, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar

    [33]

    Allan D W 1966 P. IEEE 54 221Google Scholar

  • 图 1  腔衰荡光谱基本原理

    Figure 1.  Basic schematic of cavity ring-down spectroscopy.

    图 2  腔衰荡光谱测量系统(PC: 计算机, LC: 激光器控制器, DFB: 激光器, ISO: 光纤隔离器, AOM: 声光调制器, RDC: 衰荡腔, PZT: 压电陶瓷, APD: 雪崩式光电探测器, PG: 脉冲信号发生器, RF: 射频发生器, DAQ: 数据采集系统, RD: 衰荡信号, Trig: 触发信号)

    Figure 2.  Cavity ring-down spectroscopy measurement system (PC: personal computer, LC: laser controller, DFB: DFB laser, ISO: fiber isolator, AOM: acousto-optic modulator, RDC: ring-down cavity, PZT: piezoceramics, APD: avalanche photodiode, PG: pulse generator, RF: radio frequency generator, DAQ: digital acquisition, RD: ring-down signal, Trig: trigger)

    图 3  不同衰荡信号采样长度

    Figure 3.  Different sampling length of ring-down signal.

    图 4  不同采样长度下, 衰荡时间提取效果

    Figure 4.  The result of ring-down time extraction in different sampling length.

    图 5  待测区域谱线展示与不同压力测量结果

    Figure 5.  Display of spectral lines in measured region and the measured spectra in different pressures.

    图 6  仅改变H2S浓度测量结果

    Figure 6.  the spectra in only H2S concentration changed.

    图 7  变物质浓度测量光谱与线性度分析

    Figure 7.  The spectra of changing concentration and analysis of linearity.

    图 8  低浓度H2S测量结果

    Figure 8.  The spectra of H2S in low concentration.

    图 9  吸收系数Allan方差

    Figure 9.  Allan variance of absorption coefficient.

  • [1]

    Glass D C, 1990 Ann. Occup. Hyg. 34 323

    [2]

    Jappinen P, Vilkka V, Marttila O, Haahtela T 1990 Br. J. Ind. Med. 47 824

    [3]

    Duong T X, Suruda A J, Maier L A 2001 Am. J. Ind. Med. 40 221Google Scholar

    [4]

    Steinsmo. U, Rogne. T, Drugli. J 1997 Corrosion 53 955Google Scholar

    [5]

    杨建设, 尹爱国, 杨孝军, 钟丽霞 2005 水土保持研究 12 85Google Scholar

    Yang J S, Yin A G, Yang X J, Zhong L X 2005 Res. Soil. Water. Conserv. 12 85Google Scholar

    [6]

    Wang Y, Wang B, He S, Zhang L, Xing X, Li H, Lu M 2022 J. Nat. Gas Sci. Eng. 100 104477Google Scholar

    [7]

    许伟刚, 谭厚章, 刘原一, 魏博, 惠世恩 2018 中国电力 51 113

    Xv W G, Tan H Z, Liu Y Y, Wei B, Hui S H 2018 Electric Power 51 113

    [8]

    王毅斌, 张思聪, 谭厚章, 林国辉, 王萌, 卢旭超, 杨浩 2021 中国电力 54 118

    Wang Y B, Zhang S C, Tan H Z, Lin G H, Wang M, Lu X C, Yang H 2021 Electric Power 54 118

    [9]

    Pandey S K, Kim K 2009 Environ. Sci. Technol. 43 3020Google Scholar

    [10]

    Kim K 2011 Atmos. Environ. 45 3366Google Scholar

    [11]

    Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar

    [12]

    Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar

    [13]

    Mathieu O, Mulvihill C, Petersen E L 2017 P. Combust. Inst. 36 4019Google Scholar

    [14]

    张杨, 范颖, 王哲, 陈文亮 2017 电子测量与仪器学报 31 1943

    Zhang Y, Fan Y, Wang Z, Chen W L 2017 J. Electron. Measurem. Instrum. 31 1943

    [15]

    何岸, 陈雅茜, 郭敬远, 胡雪蛟, 江海峰 2022 矿业安全与环保 49 113

    He A, Chen Y X, Guo J, Hu X J, Jiang H F 2022 Mining Safety Envir. Prot. 49 113

    [16]

    Guo Y, Qiu X, Li N, Feng S, Cheng T, Liu Q, He Q, Kan R, Yang H, Li C 2020 Infrared Phys. Techn. 105 103153Google Scholar

    [17]

    王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏 2022 物理学报 71 184205Google Scholar

    Wang Z, Du Y J, Ding Y J, Lu J F, Peng Z M 2022 Acta Phys. Sin. 71 184205Google Scholar

    [18]

    彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145

    Peng Z, He S L, Zhou P L, Wang Z, Du Y J, Ding Y J, Wu Y X, Lv J F 2022 Thermal Powergen. 51 145

    [19]

    Keefe O A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [20]

    Berden G, Engeln R 2009 Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiltshire: Wiley-Blackwell) pp7–10

    [21]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [22]

    Ball S M, Jones R L 2003 Chem. Rev. 103 5239Google Scholar

    [23]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [24]

    Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar

    [25]

    Pandaa B, Maithania S, Pradhana M 2020 Chem. Phys. 535 110769

    [26]

    Matheson I B C 1987 Instrum. Sci. Technol. 16 345Google Scholar

    [27]

    Halmer D, von Basum G, Hering P, Mürtz M 2004 Rev. Sci. Instrum. 75 2187Google Scholar

    [28]

    Galatry L 1961 Phys. Rev. 122 1218Google Scholar

    [29]

    Dicke R H 1953 Phy. Rev. 89 472Google Scholar

    [30]

    Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Ra. 105 525Google Scholar

    [31]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar

    [32]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Y, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar

    [33]

    Allan D W 1966 P. IEEE 54 221Google Scholar

  • [1] Qi Gang, Huang Yin-Bo, Ling Fei-Tong, Yang Jia-Qi, Huang Jun, Yang Tao, Zhang Lei-Lei, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity. Acta Physica Sinica, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] Tian Si-Di, Du Yan-Jun, Li Ji-Dong, Ding Yan-Jun, Peng Zhi-Min, Lü Jun-Fu, Pan Chao, Feng Xiao-Ya. High precision measurement of spectroscopic parameters of H2S in 6320—6350 cm–1 band. Acta Physica Sinica, 2023, 72(2): 024205. doi: 10.7498/aps.72.20221855
    [3] Liu Li-Xian, Chen Bai-Song, Zhang Le, Zhang Xue-Shi, Huan Hui-Ting, Yin Xu-Kun, Shao Xiao-Peng, Ma Yu-Fei, Mandelis Andreas. Photoacoustic simultaneous detection of multiple trace gases for industrial park application. Acta Physica Sinica, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [4] Meng Fan-Hao, Qin Min, Fang Wu, Duan Jun, Tang Ke, Zhang He-Lu, Shao Dou, Liao Zhi-Tang, Xie Pin-Hua. Measurements of atmospheric HONO and NO2 utilizing an open-path broadband cavity enhanced absorption spectroscopy based on an iterative algorithm. Acta Physica Sinica, 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [5] Rao Bing-Jie, Zhang Pan, Li Ming-Kun, Yang Xi-Guang, Yan Lu-Lu, Chen Xin, Zhang Shou-Gang, Zhang Yan-Yan, Jiang Hai-Feng. Multi-branch erbium fiber-based femtosecond optical frequency comb for measurement of cavity ring-down spectroscopy. Acta Physica Sinica, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [6] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Lü Jun-Fu, Peng Zhi-Min. Wide-range and calibration-free H2S volume fraction measurement based on combination of wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy. Acta Physica Sinica, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [7] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min. Wavelength-scanned cavity ring down spectroscopy based on Fourier transform. Acta Physica Sinica, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [8] Kang Peng, Sun Yu, Wang Jin, Liu An-Wen, Hu Shui-Ming. Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity. Acta Physica Sinica, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [9] Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2. Acta Physica Sinica, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [10] Shao Jun-Yi, Lin Zhao-Xiang, Liu Lin-Mei, Gong Wei. Measurement of absorption spectrum around 1.572 μm. Acta Physica Sinica, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [11] Jia Meng, Zhao Gang, Hou Jia-Jia, Tan Wei, Qiu Xiao-Dong, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Research and data processing of double locked cavity ringdown absorption spectroscopy. Acta Physica Sinica, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [12] Ling Liu-Yi, Xie Pin-Hua, Lin Pan-Pan, Huang You-Rui, Qin Min, Duan Jun, Hu Ren-Zhi, Wu Feng-Cheng. A concentration retrieval method for incoherent broadband cavity-enhanced absorption spectroscopy based on O2-O2 absorption. Acta Physica Sinica, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [13] Hu Ren-Zhi, Wang Dan, Xie Pin-Hua, Ling Liu-Yi, Qin Min, Li Chuan-Xin, Liu Jian-Guo. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement. Acta Physica Sinica, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [14] Zhang Zhi-Rong, Wu Bian, Xia Hua, Pang Tao, Wang Gao-Xuan, Sun Peng-Shuai, Dong Feng-Zhong, Wang Yu. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [15] Wang Yang, Li Ang, Xie Pin-Hua, Chen Hao, Mou Fu-Sheng, Xu Jin, Wu Feng-Cheng, Zeng Yi, Liu Jian-Guo, Liu Wen-Qing. Measuring tropospheric vertical distribution and vertical column density of NO2 by multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [16] Zhou Hai-Jin, Liu Wen-Qing, Si Fu-Qi, Dou Ke. Retrieval of surface NO2 mixing ratio from multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [17] Wang Yang, Xie Pin-Hua, Li Ang, Zeng Yi, Xu Jin, Si Fu-Qi. Measurement of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy in Hefei city. Acta Physica Sinica, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [18] Cao Lin, Wang Chun-Mei, Chen Yang-Qin, Yang Xiao-Hua. Theoretical investigation of optical heterodyne cavity ring down spectroscopy. Acta Physica Sinica, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [19] ZHOU BIN, LIU WEN-QING, QI FENG, LI ZHEN-BI, CHUI YAN-JUN. STUDY OF CONCENTRATION RETRIEVING METHOD IN DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY FOR MEASURING AIR POLLUTANTS. Acta Physica Sinica, 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
    [20] ZHAO HONG-TAI, LIU XIAO-JUN, CAO JUN-WEN, PENG LIANG-YOU, ZHAN MING-SHENG. MEASUREMENT OF THE TRANSITION OF BARIUM 6s6p1P1←6s6s1S0 USING CAVITY RINGDOWN SPECTROSCOPY. Acta Physica Sinica, 2001, 50(7): 1274-1278. doi: 10.7498/aps.50.1274
Metrics
  • Abstract views:  4044
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2022
  • Accepted Date:  26 November 2022
  • Available Online:  02 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回