Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear evolution characteristics of peeling-ballooning mode under negative triangularity

Qin Chen-Chen Mou Mao-Lin Chen Shao-Yong

Citation:

Nonlinear evolution characteristics of peeling-ballooning mode under negative triangularity

Qin Chen-Chen, Mou Mao-Lin, Chen Shao-Yong
PDF
HTML
Get Citation
  • Experiments on TCV tokamak have achieved high confinement mode (H-mode) operation with negative triangularity, and this mode shows quite different characteristics from those with the positive triangularity in experiment and simulation. Linear simulations for kinetic ballooning mode and peeling-ballooning(PB) mode without diamagnetic effect show that negative triangularity can enhance the instability of the ballooning mode and close access to the second stable region. However, the understanding of ELM for negative triangularity is not sufficient. Therefore, it is necessary to carry out further research on ELM with negative triangularity.In this work, based on a series of equilibria with different triangularities in Tokamak, the nonlinear characteristics of negative triangularity of PB mode is investigated. It is found that the negative triangularity can destabilize the PB mode by a larger unfavorable curvature region, which will reduce the instability threshold, and thus limiting the increase of pedestal height. In the nonlinear phase, the pressure perturbation intensity with negative triangularity will extend to the top area and the bottom area in the low field side and bring about an earlier ELM collapse. Meanwhile, modes with different toroidal mode numbers are more likely to be triggered off and then grow and replaces the initial unstable mode, showing more obvious turbulent transport characteristics, which can play a role in the ELM energy loss.
      Corresponding author: Mou Mao-Lin, mlmou@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11905152), the National Magnetic Confinement Fusion Energy R&D Program of China (Grant Nos. 2019YFE03090400, 2019YFE03030004), the National Key R&D Program of China (Grant Nos. 2017YFE0301203, 2017YFE0301101), and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC1820).
    [1]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, Müller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [2]

    Zohm H 1996 Plasma Phys. Controlled Fusion 38 105Google Scholar

    [3]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [4]

    Lao L L, Ferron J R, Miller R L, Osborne T H, Chan V S, Groebner R J, Jackson G L, La Haye R J, Strait E J, Taylor T S, Turnbull A D, Doyle E J, Lazarus E A, Murakami M, McKee G R, Rice B W, Zhang C, Chen L 1999 Nucl. Fusion 39 1785Google Scholar

    [5]

    Onjun T, Kritz A H, Bateman G, Parail V, Lonnroth J, Huysmans G 2004 Phys. Plasmas 11 3006Google Scholar

    [6]

    Laggner F M, Wolfrum E, Cavedon M, Dunne M G, Birkenmeier G, Fischer R, Willensdorfer M, Aumayr F, Team E M, Team A U 2018 Nucl. Fusion 58 046008Google Scholar

    [7]

    Sugihara M, Mukhovatov V, Polevoi A, Shimada M 2003 Plasma Phys. Controlled Fusion 45 L55Google Scholar

    [8]

    Wilson H R, Connor J W, Field A R, Fielding S J, Miller R L, Lao L L, Ferron J R, Turnbull A D 1999 Phys. Plasmas 6 1925Google Scholar

    [9]

    Saarelma S, Austin M E, Knolker M, Marinoni A, Paz-Soldan C, Schmitz L, Snyder P B 2021 Plasma Phys Contr F 63 105006Google Scholar

    [10]

    Austin M E, Marinoni A, Walker M L, Brookman M W, deGrassie J S, Hyatt A W, McKee G R, Petty C C, Rhodes T L, Smith S P, Sung C, Thome K E, Turnbull A D 2019 Phys. Rev. Lett. 122 115001Google Scholar

    [11]

    Pochelon A, Angelino P, Behn R, Brunner S, Coda S, Kirneva N, Medvedev S Y, Reimerdes H, Rossel J, Sauter O, Villard L, WÁGner D, Bottino A, Camenen Y, Canal G P, Chattopadhyay P K, Duval B P, Fasoli A, Goodman T P, Jolliet S, Karpushov A, Labit B, Marinoni A, Moret J M, Pitzschke A, Porte L, Rancic M, Udintsev V S, the T C V T 2012 Plasma Fusion Res. 7 2502148Google Scholar

    [12]

    Medvedev S Y, Kikuchi M, Villard L, Takizuka T, Diamond P, Zushi H, Nagasaki K, Duan X, Wu Y, Ivanov A A, Martynov A A, Poshekhonov Y Y, Fasoli A, Sauter O 2015 Nucl. Fusion 55 063013Google Scholar

    [13]

    Merle A, Sauter O, Medvedev S Y 2017 Plasma Phys. Controlled Fusion 59 104001Google Scholar

    [14]

    Crotinger J A, LoDestro L, Pearlstein L D, Tarditi A, Casper T A, Hooper E B 1997 Corsica: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program (Livermore, CA: Lawrence Livermore National Laboratory)

    [15]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [16]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [17]

    Kaw P K, Valeo E J, Rutherford P H 1979 Phys. Rev. Lett. 43 1398Google Scholar

    [18]

    Greene J M, Chance M S 1981 Nucl. Fusion 21 453Google Scholar

    [19]

    Sauter O, Angioni C, Lin-Liu Y R 1999 Phys. Plasmas 6 2834Google Scholar

    [20]

    Sauter O, Angioni C, Lin-Liu Y R 2002 Phys. Plasmas 9 5140Google Scholar

    [21]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

    [22]

    Freidberg J P 2014 IDEAL MHD (Cambridge: Cambridge University Press)

    [23]

    Xu X Q, Ma J F, Li G Q 2014 Phys Plasmas 21 120704Google Scholar

    [24]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [25]

    Xu X Q, Xia T Y, Yan N, Liu Z X, Kong D F, Diallo A, Groebner R J, Hubbard A E, Hughes J W 2016 Phys. Plasmas 23 055901Google Scholar

    [26]

    Gui B, Xu X Q, Myra J R, D'Ippolito D A 2014 Phys. Plasmas 21 112302Google Scholar

  • 图 1  不同三角形变位型的磁面 (a) $ \delta =0; $ (b) $ \delta =-0.3 $, 蓝色实线代表 $ {\psi }_{{\rm{n}}}=0.4 $到1的磁面, 归一化磁通间隔为$ {\psi }_{{\rm{n}}}=0.1 $, 其中$ {\psi }_{{\rm{n}}}=\left(\psi -{\psi }_{{\rm{a}}{\rm{x}}{\rm{i}}{\rm{s}}}\right)/\left({\psi }_{{\rm{s}}{\rm{e}}{\rm{p}}}-{\psi }_{{\rm{a}}{\rm{x}}{\rm{i}}{\rm{s}}}\right) $, 绿色区域为坏曲率区域($\nabla {B}^{2}\cdot \nabla P > 0$), 黄色区域为好曲率区($\nabla {B}^{2}\cdot \nabla P < 0$)[9,18], 黑色虚线为中平面位置

    Figure 1.  Comparison of magnetic surfaces with varied δ: (a) $ \delta =0; $ (b) $ \delta =-0.3 $. Blue lines represent the magnetic surfaces from $ {\psi }_{{\rm{n}}}=0.4 $ to 1 with an interval of 0.1, $ {\psi }_{{\rm{n}}}=\left(\psi -{\psi }_{{\rm{a}}{\rm{x}}{\rm{i}}{\rm{s}}}\right)/\left({\psi }_{{\rm{s}}{\rm{e}}{\rm{p}}}-{\psi }_{{\rm{a}}{\rm{x}}{\rm{i}}{\rm{s}}}\right) $ is the normalized radial coordinate. The green areas show the unfavorable curvature regions where $\nabla {B}^{2}\cdot \nabla P > 0$ and yellow areas show the favorable curvature regions where $\nabla {B}^{2}\cdot \nabla P < 0$. Black dashed line shows the position of the midplane.

    图 2  压强剖面$ {P}_{0} $(黑色实线)和三角形变分别为$ \delta =-0.3 $ (红色实线), $ \delta =0.0 $ (蓝色点线)的平行电流剖面 $ {J}_{\parallel 0} $

    Figure 2.  The pressure $ {P}_{0} $ (black solid line) and parallel current $ {J}_{\parallel 0} $ profiles for cases $ \delta =0.0 $ (blue dotted line) and $ \delta =0.3 $ (red solid line).

    图 3  不同三角形变($ \delta =-0.3—0 $)位型的P-B模线性增长率模谱

    Figure 3.  Linear growth rates versus toroidal mode number for $\delta =-0.3$–0.

    图 4  不同三角形变($ \delta =-0.3—0 $)位型外中平面上的局域磁剪切 $ {s}_{{\rm{l}}} $在径向上的变化

    Figure 4.  Profiles of local shear $ {s}_{l} $ at the outer midplane for $\delta =-0.3$–0.

    图 5  不同三角形变位型下ELM能量损失的对数值随时间的演化

    Figure 5.  Time evolution of the logarithm of ELM size for different triangularity cases.

    图 6  (a) $ \delta =0 $和(b$\delta =-0.2$位型下, $ t=193{{\rm{\tau }}}_{{\rm{A}}} $时扰动压强的环向平均在极向截面的分布. 弱场侧顶部和底部区域的黑色虚线框显示了比较区域, 黑色点线表示中平面位置

    Figure 6.  Distribution of the toroidal-averaged pressure perturbation at the poloidal cross section at $ t=193{\tau }_{{\rm{A}}} $ for cases (a) $ \delta =0 $ and (b) $ \delta =-0.2 $. Black dashed frames at the top and bottom areas in the low field side show the regions for comparison. Black dotted line shows the position of the midplane.

    图 7  (a1)—(a3)$\delta =0$和(b1)—(b3) $ \delta =-0.2 $$t=100,~ 200, ~300{\tau }_{{\rm{A}}}$时在外中平面上的压强扰动

    Figure 7.  Pressure perturbation at $ t=100, 200, 300{\tau }_{{\rm{A}}} $ at the outer midplane for cases: (a1)–(a3)$\delta =0;$(b1)−(b3)$\delta =-0.2$.

    图 8  (a)$\delta =0$ 和 (b) $ \delta =-0.2 $位型下的环向模式演化

    Figure 8.  Modes evolution for cases: (a) $ \delta =0; $ (b) $ \delta =-0.2 $.

  • [1]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, Müller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [2]

    Zohm H 1996 Plasma Phys. Controlled Fusion 38 105Google Scholar

    [3]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [4]

    Lao L L, Ferron J R, Miller R L, Osborne T H, Chan V S, Groebner R J, Jackson G L, La Haye R J, Strait E J, Taylor T S, Turnbull A D, Doyle E J, Lazarus E A, Murakami M, McKee G R, Rice B W, Zhang C, Chen L 1999 Nucl. Fusion 39 1785Google Scholar

    [5]

    Onjun T, Kritz A H, Bateman G, Parail V, Lonnroth J, Huysmans G 2004 Phys. Plasmas 11 3006Google Scholar

    [6]

    Laggner F M, Wolfrum E, Cavedon M, Dunne M G, Birkenmeier G, Fischer R, Willensdorfer M, Aumayr F, Team E M, Team A U 2018 Nucl. Fusion 58 046008Google Scholar

    [7]

    Sugihara M, Mukhovatov V, Polevoi A, Shimada M 2003 Plasma Phys. Controlled Fusion 45 L55Google Scholar

    [8]

    Wilson H R, Connor J W, Field A R, Fielding S J, Miller R L, Lao L L, Ferron J R, Turnbull A D 1999 Phys. Plasmas 6 1925Google Scholar

    [9]

    Saarelma S, Austin M E, Knolker M, Marinoni A, Paz-Soldan C, Schmitz L, Snyder P B 2021 Plasma Phys Contr F 63 105006Google Scholar

    [10]

    Austin M E, Marinoni A, Walker M L, Brookman M W, deGrassie J S, Hyatt A W, McKee G R, Petty C C, Rhodes T L, Smith S P, Sung C, Thome K E, Turnbull A D 2019 Phys. Rev. Lett. 122 115001Google Scholar

    [11]

    Pochelon A, Angelino P, Behn R, Brunner S, Coda S, Kirneva N, Medvedev S Y, Reimerdes H, Rossel J, Sauter O, Villard L, WÁGner D, Bottino A, Camenen Y, Canal G P, Chattopadhyay P K, Duval B P, Fasoli A, Goodman T P, Jolliet S, Karpushov A, Labit B, Marinoni A, Moret J M, Pitzschke A, Porte L, Rancic M, Udintsev V S, the T C V T 2012 Plasma Fusion Res. 7 2502148Google Scholar

    [12]

    Medvedev S Y, Kikuchi M, Villard L, Takizuka T, Diamond P, Zushi H, Nagasaki K, Duan X, Wu Y, Ivanov A A, Martynov A A, Poshekhonov Y Y, Fasoli A, Sauter O 2015 Nucl. Fusion 55 063013Google Scholar

    [13]

    Merle A, Sauter O, Medvedev S Y 2017 Plasma Phys. Controlled Fusion 59 104001Google Scholar

    [14]

    Crotinger J A, LoDestro L, Pearlstein L D, Tarditi A, Casper T A, Hooper E B 1997 Corsica: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program (Livermore, CA: Lawrence Livermore National Laboratory)

    [15]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [16]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [17]

    Kaw P K, Valeo E J, Rutherford P H 1979 Phys. Rev. Lett. 43 1398Google Scholar

    [18]

    Greene J M, Chance M S 1981 Nucl. Fusion 21 453Google Scholar

    [19]

    Sauter O, Angioni C, Lin-Liu Y R 1999 Phys. Plasmas 6 2834Google Scholar

    [20]

    Sauter O, Angioni C, Lin-Liu Y R 2002 Phys. Plasmas 9 5140Google Scholar

    [21]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

    [22]

    Freidberg J P 2014 IDEAL MHD (Cambridge: Cambridge University Press)

    [23]

    Xu X Q, Ma J F, Li G Q 2014 Phys Plasmas 21 120704Google Scholar

    [24]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [25]

    Xu X Q, Xia T Y, Yan N, Liu Z X, Kong D F, Diallo A, Groebner R J, Hubbard A E, Hughes J W 2016 Phys. Plasmas 23 055901Google Scholar

    [26]

    Gui B, Xu X Q, Myra J R, D'Ippolito D A 2014 Phys. Plasmas 21 112302Google Scholar

  • [1] Fan Hao, Chen Shao-Yong, Mou Mao-Lin, Liu Tai-Qi, Zhang Ye-Min, Tang Chang-Jian. Influence of lower hybrid wave injection on peeling-ballooning modes. Acta Physica Sinica, 2024, 73(9): 095204. doi: 10.7498/aps.73.20240130
    [2] Liu Tai-Qi, Chen Shao-Yong, Mou Mao-Lin, Tang Chang-Jian. Theoretical study of effect of hyper-resistivity on linear stability of ballooning mode. Acta Physica Sinica, 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [3] Ren Zhen-Zhen, Shen Wei. Numerical simulations of fishbones driven by fast ions in negative triangularity tokamak. Acta Physica Sinica, 2023, 72(21): 215202. doi: 10.7498/aps.72.20230650
    [4] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Wang De-Zhen. Numerical simulation of erosion of misaligned W/Cu monoblocks caused by ITER-like type-Iedge localized modes. Acta Physica Sinica, 2023, 72(18): 185202. doi: 10.7498/aps.72.20230281
    [5] Qiang Jin, He Kai-Zhou, Liu Dong-Ni, Lu Qi-Hai, Han Gen-Liang, Song Yu-Zhe, Wang Xiang-Qian. Study of magnetic vortex spin wave mode in triangular structures. Acta Physica Sinica, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [6] Meng Miao, Yan De-Xian, Li Jiu-Sheng, Sun Shuai. Research on negative curvature terahertz fiber based on nested triangle structure cladding. Acta Physica Sinica, 2020, 69(16): 167801. doi: 10.7498/aps.69.20200457
    [7] Zhang Hua-Lin, Sun Lin, Han Jia-Ning. Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment. Acta Physica Sinica, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [8] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Numerical study of thermal erosion and topographical change of divertor target plates induced by type-I edge-localized modes. Acta Physica Sinica, 2017, 66(3): 035201. doi: 10.7498/aps.66.035201
    [9] Zhou Wen, Chen He-Ming. Mode division multiplexing of two-dimensional triangular lattice photonic crystal based on magneto-optical effect. Acta Physica Sinica, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [10] Liu Zhi-Gang, Liu Wei-Long, Zhao Hai-Jun. Quantum calculations for photodetachment cross sections of H- in an equilateral triangle cavity. Acta Physica Sinica, 2015, 64(16): 163202. doi: 10.7498/aps.64.163202
    [11] Zhang Zhi-Dong, Gao Si-Min, Wang Hui, Wang Hong-Yan. Resonance mode of an equilateral triangle with triangle notch. Acta Physica Sinica, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [12] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [13] Wang Xin, Lou Shu-Qin, Lu Wen-Liang. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Acta Physica Sinica, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [14] Zhang Jun, Yu Tian-Bao, Liu Nian-Hua, Liao Qing-Hua, He Ling-Juan. Propagation properties of light in multimode photonic crystal waveguides with triangular lattices based on total internal reflection. Acta Physica Sinica, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [15] Zhou Ben-Yuan, Huang Hui, Li Gao-Xiang. Enhancement of three-mode Gaussian state light field nonlocality. Acta Physica Sinica, 2009, 58(3): 1679-1684. doi: 10.7498/aps.58.1679
    [16] Zhang Da-Cheng, Wang Lu-Xia, Liu De-Sheng, Han Sheng-Hao, Xie Shi-Jie. Effect of atomic fluctuation on the localized modes in one-dimensional system. Acta Physica Sinica, 2003, 52(12): 3191-3196. doi: 10.7498/aps.52.3191
    [17] PAN CHUAN-HONG, DING HOU-CHANG, WU LING-QIAO. KINETIC THEORY ON BALLOONING-MODE IN COLLISIONAL PLASMAS. Acta Physica Sinica, 1986, 35(11): 1411-1425. doi: 10.7498/aps.35.1411
    [18] SHI BING-REN, SUI GUO-FANG. KINETIC BALLOONING MODE ANALYSIS OF TOKAMAK PLASMAS WITH THE SECOND STABILITY REGIME INCLUDED. Acta Physica Sinica, 1984, 33(11): 1546-1555. doi: 10.7498/aps.33.1546
    [19] SHI BING-REN. ON THE SECOND STABILITY REGION OF TOKAMAK PLASMAS AGAINST HIGH-n BALLOONING MODES. Acta Physica Sinica, 1983, 32(11): 1398-1406. doi: 10.7498/aps.32.1398
    [20] LI YIN-YUAN, ZHU YAN-QING. LOCALIZED MODES OF SPIN WAVES IN THE CUBIC FERROMAGNETICS. Acta Physica Sinica, 1963, 19(11): 753-763. doi: 10.7498/aps.19.753
Metrics
  • Abstract views:  3691
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2022
  • Accepted Date:  29 November 2022
  • Available Online:  17 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回