Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of magnetic vortex spin wave mode in triangular structures

Qiang Jin He Kai-Zhou Liu Dong-Ni Lu Qi-Hai Han Gen-Liang Song Yu-Zhe Wang Xiang-Qian

Citation:

Study of magnetic vortex spin wave mode in triangular structures

Qiang Jin, He Kai-Zhou, Liu Dong-Ni, Lu Qi-Hai, Han Gen-Liang, Song Yu-Zhe, Wang Xiang-Qian
PDF
HTML
Get Citation
  • As a kind of nanoscale magnetic structure, the magnetic vortex has the advantages of small size, easy integration, easy control, low driving current density, low heat loss, etc. Owing to its potential application value and research significance, it has received more and more attention since its discovery.The existence of the magnetic vortex is the result of the competition between the exchange energy and the magnetostatic energy in the system. The magnetization of magnetic vortex usually contains the in-plane part and the central region part, so it usually has dual properties of chirality and polarity. The chirality is related to the arrangement of the magnetization in the plane, which can be divided into clockwise direction and counterclockwise direction. Moreover, the polarities +1 and –1 respectively represent the magnetization in the central area of the magnetic vortex core along the +z axis and –z axis. On the one hand, the magnetic vortex can be used as an information carrier in the storage device by driving the polarity reversal, and has the advantages of fast reading and writing speed, easy erasing and rewriting. On the other hand, it is expected to be used in next-generation spintronic devices, such as spin nano-oscillators based on magnetic vortex, which can continuously output high-frequency microwave signals. To further enhance the applicability of magnetic vortex, the Dzyaloshinskii–Moriya interaction (DMI) is introduced into the system, with symmetry breaking or strong spin-orbit coupling, and its dynamic process can be regulated by changing the magnetic vortex structure. The DM effective field plays a role in forcing the adjacent magnetization to be along the perpendicular direction in the heterostructure system lacking interface inversion symmetry. Thus, the existence of DMI can make the in-plane magnetization oriented to the out-of-plane direction. In this work, the triangle-shape magnetic vortex structure is varied by changing the strength of DM effective field. The microwave magnetic fields are respectively applied along the in-plane direction and out-of-plane direction, and the eigenfrequencies are obtained by using fast Fourier transform. Next, we further explore the spin wave modes at different eigenfrequencies. Finally, we vary the intensity of DMI in the system to adjust different eigenfrequencies. These results open up possibilities for the development and application of magnetic vortex in spintronics.
      Corresponding author: Wang Xiang-Qian, wxiangqian_1987@163.com
    • Funds: Project supported by the Science and Technology Program of Lanzhou (Grant No. 2021-1-157), Less Developed Regions of the National Natural Science Foundation of China (Grant No. 51761001), the Science and Technology Program of Gansu Province, China (Grant No. 20YF8GA125), the Innovative Team Construction Project of Gansu Academy of Sciences (Grant No. 2020CX005-01), and the Applied Research and Development Project Gansu Academy of Sciences(Grant No. 2018JK-02).
    [1]

    Vansteenkiste A, Chou K W, Weigand M, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Woltersdorf G, Back C H, Schütz G, Waeyenberge B V 2009 Nat. Phys 5 332Google Scholar

    [2]

    Völkel A R, Wysin G M, Mertens F G, Bishop A R, Schnitzer H J 1994 Phys. Rev. B 50 12711Google Scholar

    [3]

    Thiele A A 1973 Phys. Rev. Lett 30 230Google Scholar

    [4]

    Choe S B, Acremann Y, Scholl A, Bauer A, Doran A, Stöhr J, Padmore H A 2004 Science 304 420Google Scholar

    [5]

    Kravchuk V P, Sheka D D, Gaididei Y, Mertens F G 2007 J. App. Phys 102 043908Google Scholar

    [6]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930Google Scholar

    [7]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577Google Scholar

    [8]

    Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett 117 087204Google Scholar

    [9]

    Huber D L 1982 J. Appl. Phys 53 1899Google Scholar

    [10]

    Xiao Q F, Rudge J, Choi B C, Hong Y K, Donohoe G 2006 Appl. Phys. Lett. 89 262507Google Scholar

    [11]

    Hertel R, Gliga S, Fahnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201Google Scholar

    [12]

    Weigand M, Waeyenberge B V, Vansteenkiste A, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Kaznatcheev K, Bertwistle D, Woltersdorf G, Back C H, Schütz G 2009 Phys. Rev. Lett. 102 077201Google Scholar

    [13]

    Kim S K, Lee K S, Yu Y S, Choi Y S 2008 Appl. Phys. Lett. 92 022509Google Scholar

    [14]

    Bohlens S, Krüger B, Drews A, Bolte M, Meier G, Pfannkuche D 2008 Appl. Phys. Lett. 93 142508Google Scholar

    [15]

    Pigeau B, Loubens G d, Klein O, Riegler A, Lochner F, Schmidt G, Molenkamp L W, Tiberkevich V S, Slavin A N 2010 Appl. Phys. Lett. 96 132506Google Scholar

    [16]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [17]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201Google Scholar

    [18]

    Heinze S, Bergmann K v, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [19]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [20]

    Jaafar M, Yanes R, Asenjo A, Chubykalo-Fesenko O, Vázquez M, González E M, Vicent J L 2018 Nanotechnology 19 285717

    [21]

    Jaafar M, Yanes R, Lara D P d, Chubykalo-Fesenko O, Asenjo A, Gonzalez E M, Anguita J V, Vazquez M, Vicent J L 2010 Phys. Rev. B 81 054439Google Scholar

    [22]

    Lin C S, Lim H S, Wang C C, Adeyeye A O, Wang Z K, Ng S C, Kuok M H 2010 J. Appl. Phys 108 114305Google Scholar

    [23]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater 11 372Google Scholar

    [24]

    Donahue M J, Porter D G 2020 New J. Phys 22 033001Google Scholar

    [25]

    Yoo M W, Lee J, Kim S K 2012 Appl. Phys. Lett. 100 172413Google Scholar

    [26]

    Zhang H, Liu Y W, Yan M, Hertel R 2010 IEEE Trans. Magn. 46 1675Google Scholar

    [27]

    Yan M, Leaf G, Kaper H, Camley R, Grimsditch M 2006 Phys. Rev. B 73 014425Google Scholar

    [28]

    Mruczkiewicz M, Gruszecki P, Krawczyk M, Guslienko K Y 2018 Phys. Rev. B 97 064418Google Scholar

    [29]

    Mruczkiewicz M, Krawczyk M, Guslienko K Y 2017 Phys. Rev. B 95 094414Google Scholar

  • 图 1  不同DMI有效场强度下的三角形结构中磁涡旋基态

    Figure 1.  Ground state of magnetic vortex in triangular structure under different DMI constant.

    图 2  (a) sinc形式的磁场随时间变化情况; (b)和(c)分别为激励磁场在xz方向上时, 磁涡旋的动态磁化率虚部Imχx和Imχz

    Figure 2.  (a) The relationship between time and sinc-type microwave field; (b) and (c) are the imaginary part of dynamic susceptibility Imχx and Imχz when the exciting magnetic field is applied along in-plane direction and out-of-plane direction, respectively.

    图 3  磁涡旋在x, y, z方向上不同自旋波模式的空间振幅及相位分布

    Figure 3.  The spatial amplitude and phase distributions of the different spin wave mode of magnetic vortex in the x, y, and z directions

    图 4  磁涡旋在对应本征频率的微波磁场下不同时刻的净余磁矩($ \delta {\mathit{m}}_{z} $)

    Figure 4.  The net magnetization ($ \delta {\mathit{m}}_{z} $) of the magnetic vortex at different time under the microwave magnetic field, which corresponding to the eigenfrequencies.

    图 5  (a) 磁涡旋所在区域占三角形结构整体面积之比随DMI系数变化情况; (b)和(c)分别为激励磁场施加在面内和面外方向上时, 磁涡旋的DMI系数与共振频率的关系相图

    Figure 5.  (a) The relationship between DMI constant and the ratio of the area where the magnetic vortex is located to the overall area of the triangular structure. Phase diagram of magnetic vortex as a function of DMI constant and resonance frequency, where (b) and (c) represent the excitation field applied in in-plane and out-of-plane directions, respectively.

  • [1]

    Vansteenkiste A, Chou K W, Weigand M, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Woltersdorf G, Back C H, Schütz G, Waeyenberge B V 2009 Nat. Phys 5 332Google Scholar

    [2]

    Völkel A R, Wysin G M, Mertens F G, Bishop A R, Schnitzer H J 1994 Phys. Rev. B 50 12711Google Scholar

    [3]

    Thiele A A 1973 Phys. Rev. Lett 30 230Google Scholar

    [4]

    Choe S B, Acremann Y, Scholl A, Bauer A, Doran A, Stöhr J, Padmore H A 2004 Science 304 420Google Scholar

    [5]

    Kravchuk V P, Sheka D D, Gaididei Y, Mertens F G 2007 J. App. Phys 102 043908Google Scholar

    [6]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930Google Scholar

    [7]

    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R 2002 Science 298 577Google Scholar

    [8]

    Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett 117 087204Google Scholar

    [9]

    Huber D L 1982 J. Appl. Phys 53 1899Google Scholar

    [10]

    Xiao Q F, Rudge J, Choi B C, Hong Y K, Donohoe G 2006 Appl. Phys. Lett. 89 262507Google Scholar

    [11]

    Hertel R, Gliga S, Fahnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201Google Scholar

    [12]

    Weigand M, Waeyenberge B V, Vansteenkiste A, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Kaznatcheev K, Bertwistle D, Woltersdorf G, Back C H, Schütz G 2009 Phys. Rev. Lett. 102 077201Google Scholar

    [13]

    Kim S K, Lee K S, Yu Y S, Choi Y S 2008 Appl. Phys. Lett. 92 022509Google Scholar

    [14]

    Bohlens S, Krüger B, Drews A, Bolte M, Meier G, Pfannkuche D 2008 Appl. Phys. Lett. 93 142508Google Scholar

    [15]

    Pigeau B, Loubens G d, Klein O, Riegler A, Lochner F, Schmidt G, Molenkamp L W, Tiberkevich V S, Slavin A N 2010 Appl. Phys. Lett. 96 132506Google Scholar

    [16]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [17]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201Google Scholar

    [18]

    Heinze S, Bergmann K v, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [19]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [20]

    Jaafar M, Yanes R, Asenjo A, Chubykalo-Fesenko O, Vázquez M, González E M, Vicent J L 2018 Nanotechnology 19 285717

    [21]

    Jaafar M, Yanes R, Lara D P d, Chubykalo-Fesenko O, Asenjo A, Gonzalez E M, Anguita J V, Vazquez M, Vicent J L 2010 Phys. Rev. B 81 054439Google Scholar

    [22]

    Lin C S, Lim H S, Wang C C, Adeyeye A O, Wang Z K, Ng S C, Kuok M H 2010 J. Appl. Phys 108 114305Google Scholar

    [23]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater 11 372Google Scholar

    [24]

    Donahue M J, Porter D G 2020 New J. Phys 22 033001Google Scholar

    [25]

    Yoo M W, Lee J, Kim S K 2012 Appl. Phys. Lett. 100 172413Google Scholar

    [26]

    Zhang H, Liu Y W, Yan M, Hertel R 2010 IEEE Trans. Magn. 46 1675Google Scholar

    [27]

    Yan M, Leaf G, Kaper H, Camley R, Grimsditch M 2006 Phys. Rev. B 73 014425Google Scholar

    [28]

    Mruczkiewicz M, Gruszecki P, Krawczyk M, Guslienko K Y 2018 Phys. Rev. B 97 064418Google Scholar

    [29]

    Mruczkiewicz M, Krawczyk M, Guslienko K Y 2017 Phys. Rev. B 95 094414Google Scholar

  • [1] Zhou Yong-Xiang, Xue Xun. Electron vortices in spin-orbit coupling system. Acta Physica Sinica, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [2] Ma Xiao-Ping, Yang Hong-Guo, Li Chang-Feng, Liu You-Ji, Piao Hong-Guang. Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed. Acta Physica Sinica, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [3] Fang Yu-Qing, Jin Zuan-Ming, Chen Hai-Yang, Ruan Shun-Yi, Li Ju-Geng, Cao Shi-Xun, Peng Yan, Ma Guo-Hong, Zhu Yi-Ming. Terahertz spectroscopic characterization of spin mode and crystal-field transition in high-throughput grown $ {\bf Sm}_{ x}{\bf Pr}_{ 1– x}{\bf FeO_3} $ crystals. Acta Physica Sinica, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [4] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [5] Lv Gang, Zhang Hong, Hou Zhi-Wei. Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer. Acta Physica Sinica, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [6] Lü Gang, Cao Xue-Cheng, Zhang Hong, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei. Local energy of magnetic vortex core reversal. Acta Physica Sinica, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [7] Sun Ming-Juan, Liu Yao-Wen. Controlling of magnetic vortex chirality and polarity by spin-polarized current. Acta Physica Sinica, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [8] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] Lü Gang, Cao Xue-Cheng, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei, Zhang Hong. Azimuthal spin wave modes in an elliptical nanomagnet with single vortex configuration. Acta Physica Sinica, 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [10] Wang Dong, Xu Sha, Cao Yan-Wei, Qin Fen. Design of a metallic photonic crystal high power microwave mode converter. Acta Physica Sinica, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [11] Zhou Yu, Zhou Qing-Chun, Ma Xiao-Dong. Vortex of an anomalous mode in Fermi gas near unitarity limit. Acta Physica Sinica, 2013, 62(14): 140301. doi: 10.7498/aps.62.140301
    [12] Lu Ling, Zhang Xin-Jun, Zhao Yan-Ping, Qin Cheng-Ming. Theoretical analysis and numerical calculation of mode conversion efficiency of fast wave. Acta Physica Sinica, 2013, 62(7): 075204. doi: 10.7498/aps.62.075204
    [13] Hou Shang-Lin, Xue Le-Mei, Li Suo-Ping, Liu Yan-Jun, Xu Yong-Zhao. Study on characteristics of acoustic modes via stimulated Brillouin scattering in photonic crystal fiber. Acta Physica Sinica, 2012, 61(13): 134206. doi: 10.7498/aps.61.134206
    [14] Chen Chuan-Wen, Xiang Yang. Crossings of Lamb modes in lead zinc niobate-lead titanate crystal plates. Acta Physica Sinica, 2012, 61(10): 107701. doi: 10.7498/aps.61.107701
    [15] Li Shu-Guang, Liu Xiao-Dong, Hou Lan-Tian. The study of waveguide mode and dispersion property in photonic crystal fibres. Acta Physica Sinica, 2003, 52(11): 2811-2817. doi: 10.7498/aps.52.2811
    [16] Zhou Shi-Ping, Qu Hai, Liao Hong-Yin. . Acta Physica Sinica, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [17] ZHANG BO, TIAN MING-LIANG, ZHANG YU-HENG. SCALING BEHAVIOURS OF VORTEX TRANSPORT IN 2H-Nb0.9Ta0.1Se2. Acta Physica Sinica, 2001, 50(11): 2221-2225. doi: 10.7498/aps.50.2221
    [18] QU HAI, ZHOU SHI-PING. VORTEX LATTICE IN A HIGH-Tc SUPERCONDUCTOR OF MIXED PAIRING SYMMETRY. Acta Physica Sinica, 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
    [19] LIU GONG-QIANG, C.S.TSAI. THEORY OF GUIDED-WAVE MAGNETOOPTIC BRAGG DIFFRACTION IN YIG-GGG WAVEGUIDE UNDER INCLINED BIAS MAGNETIC FIELD. Acta Physica Sinica, 1998, 47(7): 1213-1221. doi: 10.7498/aps.47.1213
    [20] CHEN SHAN-BAO, ZHANG ZHI-QIANG. SHORT WAVELENGTH SPIN WAVE MODE EXCITATION BOUND TO THE DOMAIN WALLS IN MAGNETIC THIN FILM. Acta Physica Sinica, 1996, 45(12): 2068-2072. doi: 10.7498/aps.45.2068
Metrics
  • Abstract views:  4424
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  07 June 2022
  • Accepted Date:  18 August 2022
  • Available Online:  19 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回