-
In a nanodisk made of soft ferromagnet, the magnetic vortex structure are highly stabilized, and the circulation directions of the vortices are naturally binary (either clockwise (CW) or counter-clockwise (CCW)), which can be associated with one bit of information, and thus the magnetic vortices have been of great interest recently. A vortex-circulation-based memory requires the perfect controllability of the circulation direction. From the circulation point of view, there are four possible ground states in a nanodisk pair: (CCW, CCW), (CCW, CW), (CW, CCW) and (CW, CW). In a perfect circular nanodisk, CW and CCW states are degenerate because of the high symmetry of the system. However, the circulation of the magnetic vortex is known to be controlled by introducing the asymmetry. It has been reported that the magnetic vortices with opposite (the same) circulations are realized in one-side-flat disk pair. That means in one-side-flat nanodisk pair only the control of two of these four ground states is possible, eg., (CCW, CW), (CW, CCW) or (CCW, CCW), (CW, CW). We found that the reversal of the magnetic vortex circulation is affected by the nanodisk thickness as well. By further introducing another asymmetry, different thickness, the control of the four circulation ground states is achieved in a nanodisk pair. In this work, the controllability of the four ground states in a nanodisk pair was numerically investigated via micromagnetic simulations. The results show that in a single one-side-flat nanodisk, there exists a preferred rotational sense at the remanent state after the nanodisk is saturated by the external magnetic field, applied parallel to the flat edge of the nanodisk. The shape anisotropy is the primary cause of this phenomenon. We further found that the obtained rotational senses of the magnetization in the vortex state in nanodisks with the same geometrical parameters but different thickness (20 nm and 50 nm) are opposite for the same direction of the externally applied field. This is attributed to the competition between the demagnetization field energy and the exchange energy during the vortex formation. The method we proposed provides a simple means of controlling the vortex state that can thus become a useful tool for designing vortex-based devices.
-
Keywords:
- magnetic vortex /
- circulation reversal /
- magnetic nanodisk /
- micromagnetic simulation
[1] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪 2018 物理学报 67 228502Google Scholar
Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2018 Acta Phys. Sin. 67 228502Google Scholar
[2] Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A 2020 Nat. Mater. 19 34Google Scholar
[3] Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H, Schiffer P 2006 Nature 439 303Google Scholar
[4] Nakano K, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, Ono T 2011 Appl. Phys. Lett. 99 262505Google Scholar
[5] Nakano K, Tanabe K, Hiramatsu R, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, Ono T 2013 Appl. Phys. Lett. 102 072405Google Scholar
[6] Möller M, Gaida J H, Schäfer S, Ropers C 2020 Commun. Phys. 3 36Google Scholar
[7] Noske M, Gangwar A, Stoll H, Kammerer M, Sproll M, Dieterle G, Weigand M, Fähnle M, Woltersdorf G, Back C H, Schütz G 2014 Phys. Rev. B 90 104415Google Scholar
[8] Ma X P, Cai M X, Li P, Shim J H, Piao H G, Kim D H 2020 J. Magn. Magn. Matter 502 166481Google Scholar
[9] Ma X P, Shim J H, Piao H G, Kim D H, Kim D E 2019 Jpn. J. Appl. Phys. 58 100909Google Scholar
[10] Jin W, He H, Chen Y, Liu Y 2009 J. Appl. Phys. 105 013906Google Scholar
[11] Chou K W, Puzic A, Stoll H, Dolgos D, Schütz G 2007 Appl. Phys. Lett. 90 202505Google Scholar
[12] Rückriem R, Schrefl T, Albrecht M 2014 Appl. Phys. Lett. 104 052414Google Scholar
[13] Mesler B L, Buchanan K S, Im M Y, Fischer P 2012 J. Appl. Phys. 111 07D311Google Scholar
[14] Han H S, Lee S, Jung D H, Kang M, Lee K S 2020 Appl. Phys. Lett. 117 042401Google Scholar
[15] Cambel V, Karapetrov G 2011 Phys. Rev. B 84 014424Google Scholar
[16] Shimon G, Adeyeye A O, Ross C A 2013 Phys. Rev. B 87 214422Google Scholar
[17] Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407Google Scholar
[18] Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503Google Scholar
[19] Uhlíř V, Urbánek M, Hladík L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, Šikola T 2013 Nat. Nanotechnol. 8 341Google Scholar
[20] Huang C H, Wu K M, Wu J C, Horng L 2013 J. Appl. Phys. 113 103905Google Scholar
[21] Gaididei Y, Sheka D D, Mertens F G 2008 Appl. Phys. Lett. 92 012503Google Scholar
[22] Li J, Wang Y, Zhao Z, Cao J, Zhu F, Tai R 2020 IEEE Trans. Magn. 56 4300306
[23] Kimura T, Otani Y, Masaki H, Ishida T, Antos R, Shibata J 2007 Appl. Phys. Lett. 90 132501Google Scholar
[24] Sugimoto S, Fukuma Y, Kasai S, Kimura T, Barman A, Otani Y 2011 Phys. Rev. Lett. 106 197203Google Scholar
[25] Konoto M, Yamada T, Koike K, Akoh H, Arima T, Tokura Y 2008 J. Appl. Phys. 103 023904Google Scholar
[26] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133Google Scholar
[27] Van Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fähnle M, Brückl H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H, Schütz G 2006 Nature 444 461Google Scholar
[28] Vavassori P, Bovolenta R, Metlusho V, Ilic B 2006 J. Appl. Phys. 99 053902Google Scholar
[29] Saitoh E, Kawabata M, Harii K, Miyajima H, Yamaoka T 2004 J. Appl. Phys. 95 1986Google Scholar
[30] Liu Y, Hou Z, Gliga S, Hertel R 2009 Phys. Rev. B 79 104435Google Scholar
[31] Yu Y S, Jung H, Lee K S, Fischer P, Kim S K 2011 Appl. Phys. Lett. 98 052507Google Scholar
-
图 2 厚度(a) t = 50 nm和(b) t = 20 nm的纳米盘的磁滞回线. 图中的颜色和箭头代表xy平面内的磁化方向, 黑色和白色的点分别代表方向朝下和朝上的磁涡旋核. 当磁感应强度从150 mT减小至0 mT时, 厚度为(c) 50 nm和(d) 20 nm的纳米盘的能量密度的变化
Figure 2. Hysteresis loops of (a) t = 50 nm and (b) t = 20 nm nanodisks. The color map as well as the arrows inside the nanodisks represents the magnetization directions in xy plane, and the black and white dots represent downward and upward magnetic vortex core, respectively. Variation of the energy density for (c) t = 50 nm and (d) t = 20 nm nanodisks when the magnetic filed is swept from 150 mT to 0 mT.
-
[1] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪 2018 物理学报 67 228502Google Scholar
Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2018 Acta Phys. Sin. 67 228502Google Scholar
[2] Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A 2020 Nat. Mater. 19 34Google Scholar
[3] Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H, Schiffer P 2006 Nature 439 303Google Scholar
[4] Nakano K, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, Ono T 2011 Appl. Phys. Lett. 99 262505Google Scholar
[5] Nakano K, Tanabe K, Hiramatsu R, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, Ono T 2013 Appl. Phys. Lett. 102 072405Google Scholar
[6] Möller M, Gaida J H, Schäfer S, Ropers C 2020 Commun. Phys. 3 36Google Scholar
[7] Noske M, Gangwar A, Stoll H, Kammerer M, Sproll M, Dieterle G, Weigand M, Fähnle M, Woltersdorf G, Back C H, Schütz G 2014 Phys. Rev. B 90 104415Google Scholar
[8] Ma X P, Cai M X, Li P, Shim J H, Piao H G, Kim D H 2020 J. Magn. Magn. Matter 502 166481Google Scholar
[9] Ma X P, Shim J H, Piao H G, Kim D H, Kim D E 2019 Jpn. J. Appl. Phys. 58 100909Google Scholar
[10] Jin W, He H, Chen Y, Liu Y 2009 J. Appl. Phys. 105 013906Google Scholar
[11] Chou K W, Puzic A, Stoll H, Dolgos D, Schütz G 2007 Appl. Phys. Lett. 90 202505Google Scholar
[12] Rückriem R, Schrefl T, Albrecht M 2014 Appl. Phys. Lett. 104 052414Google Scholar
[13] Mesler B L, Buchanan K S, Im M Y, Fischer P 2012 J. Appl. Phys. 111 07D311Google Scholar
[14] Han H S, Lee S, Jung D H, Kang M, Lee K S 2020 Appl. Phys. Lett. 117 042401Google Scholar
[15] Cambel V, Karapetrov G 2011 Phys. Rev. B 84 014424Google Scholar
[16] Shimon G, Adeyeye A O, Ross C A 2013 Phys. Rev. B 87 214422Google Scholar
[17] Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407Google Scholar
[18] Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503Google Scholar
[19] Uhlíř V, Urbánek M, Hladík L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, Šikola T 2013 Nat. Nanotechnol. 8 341Google Scholar
[20] Huang C H, Wu K M, Wu J C, Horng L 2013 J. Appl. Phys. 113 103905Google Scholar
[21] Gaididei Y, Sheka D D, Mertens F G 2008 Appl. Phys. Lett. 92 012503Google Scholar
[22] Li J, Wang Y, Zhao Z, Cao J, Zhu F, Tai R 2020 IEEE Trans. Magn. 56 4300306
[23] Kimura T, Otani Y, Masaki H, Ishida T, Antos R, Shibata J 2007 Appl. Phys. Lett. 90 132501Google Scholar
[24] Sugimoto S, Fukuma Y, Kasai S, Kimura T, Barman A, Otani Y 2011 Phys. Rev. Lett. 106 197203Google Scholar
[25] Konoto M, Yamada T, Koike K, Akoh H, Arima T, Tokura Y 2008 J. Appl. Phys. 103 023904Google Scholar
[26] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133Google Scholar
[27] Van Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fähnle M, Brückl H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H, Schütz G 2006 Nature 444 461Google Scholar
[28] Vavassori P, Bovolenta R, Metlusho V, Ilic B 2006 J. Appl. Phys. 99 053902Google Scholar
[29] Saitoh E, Kawabata M, Harii K, Miyajima H, Yamaoka T 2004 J. Appl. Phys. 95 1986Google Scholar
[30] Liu Y, Hou Z, Gliga S, Hertel R 2009 Phys. Rev. B 79 104435Google Scholar
[31] Yu Y S, Jung H, Lee K S, Fischer P, Kim S K 2011 Appl. Phys. Lett. 98 052507Google Scholar
Catalog
Metrics
- Abstract views: 5101
- PDF Downloads: 83
- Cited By: 0