Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Local energy of magnetic vortex core reversal

Lü Gang Cao Xue-Cheng Zhang Hong Qin Yu-Feng Wang Lin-Hui Li Gui-Hua Gao Feng Sun Feng-Wei

Citation:

Local energy of magnetic vortex core reversal

Lü Gang, Cao Xue-Cheng, Zhang Hong, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The polarity of magnetic vortex core can be switched by current or magnetic field through a vortex-antivortex pair creation and annihilation process, in which the significant change of the exchange energy during the switching takes an important role. To further unveil the energetic origin of magnetic vortex switching, we investigate the evolution of the maximum exchange energy density of the sample by using micromagnetic finite-element simulations based on the Landau-Lifshitz-Gilbert equation including the adiabatic and the nonadiabatic spin torque terms. Our micromagnetic calculations indicate that maximum exchange energy density for the considered sample must exceed a critical value of ~3.0106 J/m3 in order to achieve the magnetic vortex switching. The threshold value corresponds to the maximum exchange energy density at the time of creation of new vortex-antivortex pair. Following the nucleation of antivortex, the maximum exchange energy density increases rapidly with the antivortex approaching the original vortex. The maximum exchange energy density can become large at the time of annihilation of two vortexes. To explain well the critical value of the local maximum exchange energy density, we use the rigid vortex model(in which the spin distribution is unchangeable while vortex is displaced) to develop an analytical model. For a magnetic vortex confined in a thin ferromagnetic nanodisk, the magnetization distribution is unchanged along the thickness and can be seen as a two-dimensional model when the thickness is less than or on the order of the exchange length. The components of vortex magnetization vector in a ferromagnetic dot can be expressed by using a complex function w(,). Corresponding to the trivortex state appearing in vortex core reversal process, the local exchange energy density Wex around the vortexes cores is obtained. Simultaneously, we obtain the maximum exchange energy density:Wex2.3106 J/m3. In a realistic system, the shape of vortexes will deform during the vortex core reversal, which leads to the analytical result lower than the simulation value. Based on this reason, the analytical result matches well with our simulation value.
      Corresponding author: Zhang Hong, zhanghong@sdau.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No. 51302157).
    [1]

    Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y, Fukamichi K 2001 J. Appl. Phys. 90 6548

    [2]

    Van-Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fahnle M, Bruckl H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H, Schutz G 2006 Nature 444 461

    [3]

    Liu Y W, Gliga S, Hertel R, Schneider C M 2007 Appl Phys. Lett. 91 112501

    [4]

    Hertel R, Gliga S, Fahnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201

    [5]

    Weigand M, Van-Waeyenberge B, Vansteenkiste A, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Kaznatcheev K, Bertwistle D, Woltersdorf G, Back C H, Schutz G 2009 Phys. Rev. Lett. 102 077201

    [6]

    Vansteenkiste A, Chou K W, Weigand M, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Woltersdorf G, Back C H, Schutz G, Van-Waeyenberge B 2009 Nat. Phys. 5 332

    [7]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 270

    [8]

    Sheka D D, Gaididei Y, Mertens F G 2007 Appl. Phys. Lett. 91 082509

    [9]

    Liu Y W, He H, Zhang Z Z 2007 Appl. Phys. Lett. 91 242501

    [10]

    Guslienko K Y, Lee K S, Kim S K 2008 Phys. Rev. Lett. 100 027203

    [11]

    Noske M, Stoll H, Föhnle M, Gangwar A, Woltersdorf G, Slavin A, Weigand M, Dieterle G, Förster J, Back H C, Schtz G 2016 J. Appl. Phys. 119 173901

    [12]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [13]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

    [14]

    Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505(in Chinese)[孙明娟, 刘要稳2015物理学报64 247505]

    [15]

    Xiao Q F, Rudge J, Choi B C, Hong Y K, Donohoe G 2006 Appl. Phys. Lett. 89 262507

    [16]

    Lee K S, Guslienko K Y, Lee J Y, Kim S K 2007 Phys. Rev. B 76 174410

    [17]

    Kim S K, Choi Y S, Lee K S, Guslienko K Y, Jeong D E 2007 Appl. Phys. Lett. 91 082506

    [18]

    Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202

    [19]

    Zhang H, Liu Y W 2012 J. Nanosci. Nanotechnol. 12 1063

    [20]

    L G, Cao X C, Qin Y F, Wang L H, Li G H, Gao F, Sun F W, Zhang H 2015 Acta Phys. Sin. 64 217501(in Chinese)[吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红2015物理学报64 217501]

    [21]

    Papanicolaou N, Zakrzewski W J 1995 Physica D 80 225

    [22]

    Guslienko K Y, Novosad V, Otani Y, Shima Y, Fukamichi K 2001 Phys. Rev. B 65 024414

    [23]

    Jubert P O, Allenspach R 2004 Phys. Rev. B 70 144402

    [24]

    Lee K S, Choi Y S, Kim S K 2005 Appl. Phys. Lett. 87 192502

  • [1]

    Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y, Fukamichi K 2001 J. Appl. Phys. 90 6548

    [2]

    Van-Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fahnle M, Bruckl H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H, Schutz G 2006 Nature 444 461

    [3]

    Liu Y W, Gliga S, Hertel R, Schneider C M 2007 Appl Phys. Lett. 91 112501

    [4]

    Hertel R, Gliga S, Fahnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201

    [5]

    Weigand M, Van-Waeyenberge B, Vansteenkiste A, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Kaznatcheev K, Bertwistle D, Woltersdorf G, Back C H, Schutz G 2009 Phys. Rev. Lett. 102 077201

    [6]

    Vansteenkiste A, Chou K W, Weigand M, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Woltersdorf G, Back C H, Schutz G, Van-Waeyenberge B 2009 Nat. Phys. 5 332

    [7]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 270

    [8]

    Sheka D D, Gaididei Y, Mertens F G 2007 Appl. Phys. Lett. 91 082509

    [9]

    Liu Y W, He H, Zhang Z Z 2007 Appl. Phys. Lett. 91 242501

    [10]

    Guslienko K Y, Lee K S, Kim S K 2008 Phys. Rev. Lett. 100 027203

    [11]

    Noske M, Stoll H, Föhnle M, Gangwar A, Woltersdorf G, Slavin A, Weigand M, Dieterle G, Förster J, Back H C, Schtz G 2016 J. Appl. Phys. 119 173901

    [12]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [13]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

    [14]

    Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505(in Chinese)[孙明娟, 刘要稳2015物理学报64 247505]

    [15]

    Xiao Q F, Rudge J, Choi B C, Hong Y K, Donohoe G 2006 Appl. Phys. Lett. 89 262507

    [16]

    Lee K S, Guslienko K Y, Lee J Y, Kim S K 2007 Phys. Rev. B 76 174410

    [17]

    Kim S K, Choi Y S, Lee K S, Guslienko K Y, Jeong D E 2007 Appl. Phys. Lett. 91 082506

    [18]

    Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202

    [19]

    Zhang H, Liu Y W 2012 J. Nanosci. Nanotechnol. 12 1063

    [20]

    L G, Cao X C, Qin Y F, Wang L H, Li G H, Gao F, Sun F W, Zhang H 2015 Acta Phys. Sin. 64 217501(in Chinese)[吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红2015物理学报64 217501]

    [21]

    Papanicolaou N, Zakrzewski W J 1995 Physica D 80 225

    [22]

    Guslienko K Y, Novosad V, Otani Y, Shima Y, Fukamichi K 2001 Phys. Rev. B 65 024414

    [23]

    Jubert P O, Allenspach R 2004 Phys. Rev. B 70 144402

    [24]

    Lee K S, Choi Y S, Kim S K 2005 Appl. Phys. Lett. 87 192502

  • [1] Qiang Jin, He Kai-Zhou, Liu Dong-Ni, Lu Qi-Hai, Han Gen-Liang, Song Yu-Zhe, Wang Xiang-Qian. Study of magnetic vortex spin wave mode in triangular structures. Acta Physica Sinica, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [2] Yan Jian, Ren Zhi-Wei, Zhong Zhi-Yong. Spin waves in Y3Fe5O12-CoFeB spin-wave directional coupler. Acta Physica Sinica, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [3] Ma Xiao-Ping, Yang Hong-Guo, Li Chang-Feng, Liu You-Ji, Piao Hong-Guang. Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed. Acta Physica Sinica, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [4] Li Dong, Dong Sheng-Zhi, Li Lei, Xu Ji-Yuan, Chen Hong-Sheng, Li Wei. Micromagnetic simulations of reversal magnetization in core ((Nd0.7, Ce0.3)2Fe14B)-shell (Nd2Fe14B) type. Acta Physica Sinica, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [5] Lv Gang, Zhang Hong, Hou Zhi-Wei. Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer. Acta Physica Sinica, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [6] Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [7] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [8] Dong Dan-Na, Cai Li, Li Cheng, Liu Bao-Jun, Li Chuang, Liu Jia-Hao. Mechanism of magnetic radial vortex under effect of interfacial DzyaloshinskiiMoriya interaction. Acta Physica Sinica, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [9] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [10] Lü Gang, Cao Xue-Cheng, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei, Zhang Hong. Azimuthal spin wave modes in an elliptical nanomagnet with single vortex configuration. Acta Physica Sinica, 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [11] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [12] Sun Ming-Juan, Liu Yao-Wen. Controlling of magnetic vortex chirality and polarity by spin-polarized current. Acta Physica Sinica, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [13] Peng Yi, Zhao Guo-Ping, Wu Shao-Quan, Si Wen-Jing, Wan Xiu-Lin. Micromagnetic simulation and analysis of Nd2Fe14B/Fe65Co35 magnetic bilayered thin films with different orientations of the easy axis. Acta Physica Sinica, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [14] Xia Jing, Zhang Xi-Chao, Zhao Guo-Ping. Micromagnetic analysis of the effect of the easy axis orientation on demagnetization process in Nd2Fe14B/α-Fe bilayers. Acta Physica Sinica, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [15] Fan Zhe, Ma Xiao-Ping, Lee Sang-Hyuk, Shim Je-Ho, Piao Hong-Guang, Kim Dong-Hyun. Influences of the demagnetizing field on dynamic behaviors of the magnetic domain wall in ferromagnetic nanowires. Acta Physica Sinica, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [16] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [17] Song San-Yuan, Guo Guang-Hua, Zhang Guang-Fu, Song Wen-Bin. Dynamical reversal of rectangular nanodot studied by micromagnetics. Acta Physica Sinica, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [18] Yin Jin-Hua, C. H. Hee, Pan Li-Qing. First order reversal curves of laminated antiferromagnetically coupled media. Acta Physica Sinica, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [19] Yang Xiu-Hui. Micromagnetic simulations of the initial spontaneous magnetic states of nanoscale Fe islands on W(110) substrates. Acta Physica Sinica, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [20] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
Metrics
  • Abstract views:  5738
  • PDF Downloads:  278
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2016
  • Accepted Date:  31 July 2016
  • Published Online:  05 November 2016

/

返回文章
返回