Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Yb:CaYAlO4 regenerative amplifier

Wang Ge-Yang, Bai Chuan, Mai Hai-Jing, Zheng Li, Tian Xuan, Yu Yang, Tian Wen-Long, Xu Xiao-Dong, Wei Zhi-Yi, Zhu Jiang-Feng
PDF
HTML
Get Citation
  • Attosecond science is one of the driving forces for developing the femtosecond amplifiers of high average power and ultrashort pulse duration. In this work, the regenerative amplification is studied experimentally and theoretically based on Yb:CaYAlO4 crystal for the practical needs of high-repetition-rate attosecond light sources. In the theoretical study, a mode-tunable regenerative cavity with good thermal stability is designed based on the thermal lens calculations of Yb:CaYAlO4 crystal; the amplified output energy and spectra of π and σ polarization of the crystal are calculated. In the experiment, the π-axis of Yb:CaYAlO4 crystal is parallel to the laser polarization, and the laser amplifier emits 1.61 mJ pulses with average power 16.1 W. Notably, the dip of the π-polarization emission spectrum near 1025.1 nm compensates for the gain narrowing of the seed laser during amplification. Thus, the center wavelength and the spectral full width at a half maximum of the amplified laser are 1030 nm and 16 nm respectively. Using a grating-pair for compression, 149 fs pulses with peak power 9.5 GW are obtained. In comparison, the σ-polarization emission spectrum of Yb:CaYAlO4 crystal is relatively flat in a range from 1000 to 1050 nm, but with a larger gain cross-section. When the laser polarization is parallel to the σ-axis of Yb:CaYAlO4 crystal, 2.87 mJ pulses at 10 kHz repetition rate are achieved, with an average power of 28.7 W. In this case, the center wavelength and the spectral full width at half maximum of the amplified laser are 1037 nm and 11 nm respectively. Using a grating-pair for compression, 178 fs pulses with peak power of 14.2 GW are obtained. The beam quality factor measured is 1.09 along the x-axis of the amplified laser and 1.17 along the y-axis. To the best of our knowledge, this is the highest average power and the maximum pulse energy obtained from the Yb:CaYAlO4 amplifier. For applications in high-repetition-rate attosecond light sources, terahertz generation and optical parametric amplification, subsequent laser outputs with average power 200 W, pulse energy 20 mJ and pulse duration less than 200 fs are expected to be achieved by adding two stages of traveling-wave amplification.
      Corresponding author: Tian Wen-Long, wltian@xidian.edu.cn ; Zhu Jiang-Feng, jfzhu@xidian.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB4601102), the National Natural Science Foundation of China (Grant Nos. 11774277, 61975071), the Natural Science Basic Research Program of Shaanxi, China (Grant No. 2019JCW-03), and the Science and Technology Program of Xi’an, China (Grant No. 202005YK01).
    [1]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [2]

    D’Arcy R, Chappell J, Beinortaite J, et al. 2022 Nature 603 58Google Scholar

    [3]

    Lloyd-Hughes J, Oppeneer P M, Pereira dos Santos T, et al. 2021 J. Phys. Condens. Matter 33 353001Google Scholar

    [4]

    Maiuri M, Garavelli M, Cerullo G 2020 J. Am. Chem. Soc. 142 3Google Scholar

    [5]

    Kroll F, Brack F E, Bernert C, et al. 2022 Nat. Phys. 18 316Google Scholar

    [6]

    Lin Z Y, Hong M H 2021 Ultrafast Sci. 2021 9783514

    [7]

    C. Phillips K, H. Gandhi H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar

    [8]

    Iwasawa H 2020 Electron. Struct. 2 043001Google Scholar

    [9]

    Zheng W, Jiang P Z, Zhang L F, Wang Y, Sun Q, Liu Y Q, Gong Q H, Wu C Y 2021 Rev. Sci. Instrum. 92 043709Google Scholar

    [10]

    Miao J W, Ishikawa T, K. Robinson I, M. Murnane M 2015 Science 348 530Google Scholar

    [11]

    Auböck G, Consani C, Mourik F V, Chergui M 2012 Opt. Lett. 37 2337Google Scholar

    [12]

    Hönninger C, Paschotta R, Graf M, et al. 1999 Appl. Phys. B 69 3

    [13]

    朱江峰, 田文龙, 高子叶, 魏志义 2017 中国激光 44 0900001Google Scholar

    Zhu J F, Tian W L, Gao Z Y, Wei Z Y 2017 Chin. J. Lasers 44 0900001Google Scholar

    [14]

    白川, 田文龙, 王阁阳, 郑立, 徐瑞, 张大成, 王兆华, 朱江峰, 魏志义 2021 中国激光 48 0501005Google Scholar

    Bai C, Tian W L, Wang G Y, Zheng L, Xu R, Zhang D C, Wang Z H, Zhu J F, Wei Z Y 2021 Chin. J. Lasers 48 0501005Google Scholar

    [15]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe R 2010 Opt. Lett. 35 4169Google Scholar

    [16]

    Negel J P, Voss A, Ahmed M A, Bauer D, Sutter D, Killi A, Graf T 2013 Opt. Lett. 38 5442Google Scholar

    [17]

    Li D Z, Xu X D, Zhu H M, Chen X Y, Tan W D, Zhang J, Tang D Y, Ma J, Wu F, Xia C T, Xu J 2011 J. Opt. Soc. Am. B 28 1650Google Scholar

    [18]

    Rudenkov A, Kisel V, Yasukevich A, Hovhannesyan K, Petrosyan A, Kuleshov N 2016 Opt. Lett. 41 2249Google Scholar

    [19]

    Rudenkov A, Kisel V, Yasukevich A, Hovhannesyan K, Petrosyan A, Kuleshov N 2018 Devices Methods Meas. 9 205

    [20]

    S. Petrov L, Georgiev K, Velkov D, Trifonov A, Xu X D, Xu J, Buchvarov I 2022 Conference on Lasers and Electro-Optics San Jose The United States of America, May 15–20, 2022 pJTh3B.23

    [21]

    Loiko P, Becker P, Bohatý L, et al. 2017 Opt. Lett. 42 2275Google Scholar

    [22]

    Dörring J, Killi A, Morgner U, Lang A, Lederer M, Kopf D 2004 Opt. Express 12 1759Google Scholar

    [23]

    Kroetz P, Ruehl A, Murari K, Cankaya H, Kärtner F X, Hartl I, Miller R J D 2016 Opt. Express 24 9905Google Scholar

    [24]

    Ye P, Oldal L G, Csizmadia T, Filus Z, Grósz T, Jójárt P, Seres I, Bengery Z, Gilicze B, Kahaly S, Varjú K, Major B 2022 Ultrafast Sci. 2022 9823783

    [25]

    王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar

    Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar

    [26]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

  • 图 1  Yb:CYA全固态放大器的技术路线

    Figure 1.  Schematic illustration of the all-solid-state Yb:CYA amplifier.

    图 2  Yb:CYA晶体泵浦端面沿π轴和σ轴的温度分布和屈光度变化 (a) 温度分布; (b) 屈光度变化

    Figure 2.  Simulated temperature and diopter distributions along π and σ axes of the Yb:CYA crystal: (a) Temperature distribution; (b) diopter distribution.

    图 3  Yb:CYA再生腔的激光模式计算 (a) 本征模式分布; (b) 热透镜对增益介质处激光模式的影响

    Figure 3.  Calculated resonant cavity mode of the Yb:CYA regenerative amplifier: (a) Laser mode distribution; (b) laser mode at the crystal affected by the thermal lens.

    图 4  Yb:CYA晶体在π和σ偏振方向下的放大输出仿真 (a) 脉冲能量; (b) 放大光谱

    Figure 4.  The output characteristics and simulation results along π and σ axes of Yb:CYA crystal: (a) Pulse energy; (b) amplified spectrum.

    图 5  Yb:CYA再生放大器实验装置 (Seed为Yb:KGW振荡器, HR为平面高反镜片, λ/2为1/2波片, PBS为偏振分光棱镜, FR为法拉第旋光器, TG为透射光栅, M1为平凹反射镜, F为激光透镜, λ/4为1/4波片, HV为高压驱动, PC为普克尔盒, Crystal为激光晶体, M2为激光双色镜, LD为981 nm半导体激光器, DM为激光双色镜, PM为功率计, PD为光电探测器)

    Figure 5.  Experimental set-up of the Yb:CYA regenerative amplifier. (Seed, Yb:KGW oscillator; HR, dielectric flat mirror; λ/2, half-wave plate; PBS, polarizing beam splitter; FR, faraday rotator; TG, transmission grating; M1, concave laser mirror; F, lens; λ/4, quarter wave plate; HV, pockels cell driver; PC, pockels cell; Crystal, Yb:CYA crystal; M2, dichroic mirror; LD, 981 nm laser diode; DM, dichroic mirror; PM, power meter; PD, photodiode).

    图 6  Yb:CYA晶体在π偏振方向下的放大输出 (a) 功率曲线; (b) 放大光谱

    Figure 6.  The amplified output results along π-axis of Yb:CYA crystal: (a) Measured power performance of the regenerative amplifier; (b) optical spectrum of amplified pulse.

    图 7  (a) 傅里叶变换极限脉冲宽度; (b) 压缩脉冲的自相关曲线

    Figure 7.  (a) Fourier transform limited pulse duration; (b) intensity autocorrelation trace of amplified pulse.

    图 8  Yb:CYA晶体在σ偏振方向下的放大输出 (a) 功率曲线; (b) 放大光谱

    Figure 8.  The amplified output results along σ–axis of Yb:CYA crystal: (a) Measured power performance of the regenerative amplifier; (b) optical spectrum of amplified pulse.

    图 9  (a) 傅里叶极限脉冲宽度; (b) 压缩脉冲的自相关曲线

    Figure 9.  (a) The Fourier–limit pulse duration; (b) intensity autocorrelation trace of amplified pulse.

    图 10  (a) 光束质量和光斑形状; (b) 放大脉冲建立过程

    Figure 10.  (a) The output beam quality and profile; (b) the build-up of pulse energy.

    图 11  高速示波器测量的脉冲轨迹 (a) 500 ps/div; (b) 50 μs/div

    Figure 11.  Sampling oscilloscope traces of laser pulse in the time scale of (a) 500 ps/div and (b) 50 μs/div.

    图 12  Yb:CYA晶体的行波放大仿真 (a) 输出功率; (b) 放大光谱

    Figure 12.  The simulation results of the Yb:CYA traveling-wave amplifier: (a) Output power; (b) amplified spectrum.

    表 1  Yb:CYA晶体的热性质参数

    Table 1.  Parameters of thermal performance for Yb:CYA crystal.

    晶体
    轴向
    热导率/
    (W·m–1·K–1)
    折射率
    n
    密度/
    (g·cm–3)
    热光系数/
    (10–6 K–1)
    热膨胀系数/
    (10–6 K–1)
    比热容/
    (J·g–1·K–1)
    (301 K)
    π3.21.8864.748–7.88.990.593
    σ3.61.909–8.78.97
    DownLoad: CSV

    表 2  Yb:CYA晶体πσ偏振放大参数比较

    Table 2.  Comparison of amplification indicators for π and σ axes of Yb:CYA crystal.

    偏振类型平均功率
    P/W
    重复频率
    f/kHz
    脉冲能量
    E/mJ
    中心波长
    λ/nm
    光谱宽度
    Δλ/nm
    脉冲宽度
    τ/fs
    π仿真20.3102.03103014115
    实验16.1101.61103016149
    σ仿真29.1102.91103413117
    实验28.7102.87103711178
    DownLoad: CSV
  • [1]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [2]

    D’Arcy R, Chappell J, Beinortaite J, et al. 2022 Nature 603 58Google Scholar

    [3]

    Lloyd-Hughes J, Oppeneer P M, Pereira dos Santos T, et al. 2021 J. Phys. Condens. Matter 33 353001Google Scholar

    [4]

    Maiuri M, Garavelli M, Cerullo G 2020 J. Am. Chem. Soc. 142 3Google Scholar

    [5]

    Kroll F, Brack F E, Bernert C, et al. 2022 Nat. Phys. 18 316Google Scholar

    [6]

    Lin Z Y, Hong M H 2021 Ultrafast Sci. 2021 9783514

    [7]

    C. Phillips K, H. Gandhi H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar

    [8]

    Iwasawa H 2020 Electron. Struct. 2 043001Google Scholar

    [9]

    Zheng W, Jiang P Z, Zhang L F, Wang Y, Sun Q, Liu Y Q, Gong Q H, Wu C Y 2021 Rev. Sci. Instrum. 92 043709Google Scholar

    [10]

    Miao J W, Ishikawa T, K. Robinson I, M. Murnane M 2015 Science 348 530Google Scholar

    [11]

    Auböck G, Consani C, Mourik F V, Chergui M 2012 Opt. Lett. 37 2337Google Scholar

    [12]

    Hönninger C, Paschotta R, Graf M, et al. 1999 Appl. Phys. B 69 3

    [13]

    朱江峰, 田文龙, 高子叶, 魏志义 2017 中国激光 44 0900001Google Scholar

    Zhu J F, Tian W L, Gao Z Y, Wei Z Y 2017 Chin. J. Lasers 44 0900001Google Scholar

    [14]

    白川, 田文龙, 王阁阳, 郑立, 徐瑞, 张大成, 王兆华, 朱江峰, 魏志义 2021 中国激光 48 0501005Google Scholar

    Bai C, Tian W L, Wang G Y, Zheng L, Xu R, Zhang D C, Wang Z H, Zhu J F, Wei Z Y 2021 Chin. J. Lasers 48 0501005Google Scholar

    [15]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe R 2010 Opt. Lett. 35 4169Google Scholar

    [16]

    Negel J P, Voss A, Ahmed M A, Bauer D, Sutter D, Killi A, Graf T 2013 Opt. Lett. 38 5442Google Scholar

    [17]

    Li D Z, Xu X D, Zhu H M, Chen X Y, Tan W D, Zhang J, Tang D Y, Ma J, Wu F, Xia C T, Xu J 2011 J. Opt. Soc. Am. B 28 1650Google Scholar

    [18]

    Rudenkov A, Kisel V, Yasukevich A, Hovhannesyan K, Petrosyan A, Kuleshov N 2016 Opt. Lett. 41 2249Google Scholar

    [19]

    Rudenkov A, Kisel V, Yasukevich A, Hovhannesyan K, Petrosyan A, Kuleshov N 2018 Devices Methods Meas. 9 205

    [20]

    S. Petrov L, Georgiev K, Velkov D, Trifonov A, Xu X D, Xu J, Buchvarov I 2022 Conference on Lasers and Electro-Optics San Jose The United States of America, May 15–20, 2022 pJTh3B.23

    [21]

    Loiko P, Becker P, Bohatý L, et al. 2017 Opt. Lett. 42 2275Google Scholar

    [22]

    Dörring J, Killi A, Morgner U, Lang A, Lederer M, Kopf D 2004 Opt. Express 12 1759Google Scholar

    [23]

    Kroetz P, Ruehl A, Murari K, Cankaya H, Kärtner F X, Hartl I, Miller R J D 2016 Opt. Express 24 9905Google Scholar

    [24]

    Ye P, Oldal L G, Csizmadia T, Filus Z, Grósz T, Jójárt P, Seres I, Bengery Z, Gilicze B, Kahaly S, Varjú K, Major B 2022 Ultrafast Sci. 2022 9823783

    [25]

    王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar

    Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar

    [26]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

  • [1] Shi Zhuo, Chang Hong-Xiang, Wang Dong-Liang, Guo Hong-Yu, Dong Zi-Kai, Du Zhi-Hang, Liang Cheng-Bin, Li Can, Zhou Pu, Wei Zhi-Yi, Chang Guo-Qing. High power, high energy four-channel fiber coherent beam combining system. Acta Physica Sinica, 2025, 74(1): . doi: 10.7498/aps.74.20241476
    [2] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier. Acta Physica Sinica, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [3] Tao Chen-Yu, Lei Jian-Ting, Yu Xuan, Luo Yan, Ma Xin-Wen, Zhang Shao-Feng. Development of attosecond pulses and their application to ultrafast dynamics of atoms and molecules. Acta Physica Sinica, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [4] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [5] Yang Shuai-Shuai, Teng Hao, He Peng, Huang Hang-Dong, Wang Zhao-Hua, Dong Quan-Li, Wei Zhi-Yi. 10 mJ femtosecond Ti: Sapphire regenerative amplifier with large mode size. Acta Physica Sinica, 2017, 66(10): 104209. doi: 10.7498/aps.66.104209
    [6] Zhang Wei, Teng Hao, Shen Zhong-Wei, He Peng, Wang Zhao-Hua, Wei Zhi-Yi. A 18 mJ femtosecond Ti: sapphire amplifier at 100 Hz repetition rate. Acta Physica Sinica, 2016, 65(22): 224204. doi: 10.7498/aps.65.224204
    [7] He Peng, Teng Hao, Zhang Ning-Hua, Liu Yang-Yang, Wang Zhao-Hua, Wei Zhi-Yi. A cavity mode size adjustable high average power Ti: sapphire femtosecond regenerative amplifier. Acta Physica Sinica, 2016, 65(24): 244201. doi: 10.7498/aps.65.244201
    [8] Shen Zhong-Wei, Wang Zhao-Hua, Fan Hai-Tao, Qin Shuang, Teng Hao, He Peng, Wei Zhi-Yi. A 4 mJ femtosecond Ti:sapphire regenerative amplifier at 1 kHz repetition rate. Acta Physica Sinica, 2014, 63(10): 104211. doi: 10.7498/aps.63.104211
    [9] Lian Fu-Qiang, Fan Zhong-Wei, Bai Zhen-Ao, Yu Jin, Lin Wei-Ran, Zhang Xiao-Lei, Liu Di, Zhao Tian-Zhuo. A Nd:YAG regenerative amplifier seeded by 1064 nm picosecond fiber. Acta Physica Sinica, 2014, 63(13): 134207. doi: 10.7498/aps.63.134207
    [10] Zhang Wei, Teng Hao, Wang Zhao-Hua, Shen Zhong-Wei, Liu Cheng, Wei Zhi-Yi. A ring Ti:sapphire regenerative amplifier for high energy chirped pulse amplification. Acta Physica Sinica, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [11] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [12] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [13] Liu Hua-Gang, Huang Jian-Hong, Weng Wen, Li Jin-Hui, Zheng Hui, Dai Shu-Tao, Zhao Xian, Wang Ji-Yang, Lin Wen-Xiong. High power all-normal-dispersion mode-locked Yb3+-doped double-clad fiber femtosecond laser. Acta Physica Sinica, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [14] Liu Hua-Gang, Hu Ming-Lie, Liu Bo-Wen, Song You-Jian, Chai Lu, Wang Qing-Yue. Study on the high-power, high-repetition-rate and multi-wavelength femtosecond laser system. Acta Physica Sinica, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [15] Deng Qing-Hua, Peng Han-Sheng, Sui Zhan, Ding Lei, Li Ming-Zhong, Wang Jian-Jun, Tang Jun, Luo Yi-Ming, Lin Hong-Huan, Zhang Rui, Deng Ying, Lu Zhen-Hua. Simulation on a new coupling method of laser diode array end-pumped large-aperture amplifiers. Acta Physica Sinica, 2008, 57(10): 6340-6347. doi: 10.7498/aps.57.6340
    [16] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [17] Liu Bo-Wen, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier. Acta Physica Sinica, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [18] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [19] Feng Wei-Wei, Lin Li-Huang, Wang Wen-Yao, Li Ru-Xin, Wang Li-Chun. Generation of chirped pulses at high repetition rate with a Ti:sapphire regenerative amplifier. Acta Physica Sinica, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [20] ZHANG ZHI-GANG, SUN HONG. CALCULATION AND EVALUATION OF DISPERSIONS IN A FEMTOSECOND PULSE AMPLIFICATION SYSTEM. Acta Physica Sinica, 2001, 50(6): 1080-1086. doi: 10.7498/aps.50.1080
Metrics
  • Abstract views:  7458
  • PDF Downloads:  275
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2022
  • Accepted Date:  22 December 2022
  • Available Online:  29 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回