Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurements of global polarization of QCD matter in heavy-ion collisions

Sun Xu Zhou Chen-Sheng Chen Jin-Hui Chen Zhen-Yu Ma Yu-Gang Tang Ai-Hong Xu Qing-Hua

Citation:

Measurements of global polarization of QCD matter in heavy-ion collisions

Sun Xu, Zhou Chen-Sheng, Chen Jin-Hui, Chen Zhen-Yu, Ma Yu-Gang, Tang Ai-Hong, Xu Qing-Hua
PDF
HTML
Get Citation
  • The experimental data of the global polarization of Λ hyperon, ϕ and K*0 vector mesons in high-energy heavy ion collision confirm the new phenomenon of global polarization of hot-dense QCD matter, which has attracted extensive attention from researchers and has become a new hot research direction in the frontier of high-energy nuclear physics. This paper reviews the recent global polarization measurements. We focus on the global polarization measurements of Λ hyperon and ϕ, K*0 mesons, carried out by the solenoidal tracker detector (STAR) collaboration group at the Relativistic Heavy Ion Collider (RHIC) at its Phase I of Beam Energy Scan program, and extend to the global polarization measurements containing multiple strange quark particles, such as Ξ, Ω and the local polarization studies of Λ along the beam direction. In the paper, we also briefly comment on the measurements at higher energy from the large hadron collider (LHC) and at very low energy in HADES experiment. In the end of the paper, the physical information given by these experimental results is also briefly discussed.
      Corresponding author: Chen Jin-Hui, chenjinhui@fudan.edu.cn ; Xu Qing-Hua, xuqh@sdu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022FYA1604900), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34030000) and the National Natural Science Foundation of China (Grant Nos. 11890710, 12025501, 12147101).
    [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301; 96 039901(E)

    [2]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [3]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2007 Phys. Rev. C 76 024915; 95 039906(E)

    [4]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2008 Phys. Rev. C 77 061902(R)

    [5]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2017 Nature 548 62Google Scholar

    [6]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2023 Nature 614 244Google Scholar

    [7]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2018 Phys. Rev. C 98 014910Google Scholar

    [8]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) 2020 Phys. Rev. C 101 044611; 105 029902

    [9]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. Lett. 126 162301Google Scholar

    [10]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. C 104 L061901Google Scholar

    [11]

    Yassine R, Arnold O, Becker M, et al. (HADES Collaboration). 2022 Phys. Lett. B 835 137506Google Scholar

    [12]

    Pang L G, Petersen H, Wang Q, Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [13]

    Li H, Pang L G, Wang Q, Xia X L 2017 Phys. Rev. C 96 054908Google Scholar

    [14]

    Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar

    [15]

    Karpenko I, Becattini F 2017 Eur. Phys. J. C 77 213Google Scholar

    [16]

    Vitiuk O, Bravina L, Zabrodin E, 2020 Phys. Lett. B 803 135298Google Scholar

    [17]

    Guo Y, Liao J, Wang E, Xing H, Zhang H 2021 Phys. Rev. C 104 L041902Google Scholar

    [18]

    Ivanov Y 2021 Phys. Rev. C 103 L031903Google Scholar

    [19]

    Deng X G, Huang X G, Ma Y G, Zhang S 2020 Phys. Rev. C 101 064908Google Scholar

    [20]

    Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar

    [21]

    Liang Z T, Song J, Upsal I Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [22]

    Deng X G, Huang X G, Ma Y G 2022 Phys. Lett. B 835 137560Google Scholar

    [23]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005; 105 099903(E)

    [24]

    Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar

    [25]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2205.15689

    [26]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2206.05868

    [27]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [28]

    Lin, Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [29]

    Shao T H, Chen J H, Ko C M, Sun K J, Xu Z B 2020 Chin. Phys. C 44 114001Google Scholar

    [30]

    Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar

    [31]

    Chen J H, Keane D, Ma Y G, Tang A H, Xu Z B 2018 Phys. Rept. 760 1Google Scholar

    [32]

    Wang X N 2023 Nucl. Sci. Tech. 34 15Google Scholar

    [33]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501Google Scholar

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501Google Scholar

    [34]

    Workman R L et al. (Particle Data Group). 2022 PTEP 2022 083C01

    [35]

    Poskanzer A M, Voloshin S A 1998 Phys. Rev. C 58 1671Google Scholar

    [36]

    Becattini F, Karpenko I 2018 Phys. Rev. Lett. 120 012302Google Scholar

    [37]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [38]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2022 Phys. Rev. Lett. 128 172005Google Scholar

    [39]

    Fu B C, Liu S, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [40]

    Tang A H, Tu B, Zhou C S 2018 Phys. Rev. C 98 044907Google Scholar

    [41]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [42]

    盛欣力, 梁作堂, 王群 2023 物理学报 72 072502Google Scholar

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502Google Scholar

    [43]

    Shen D Y, Chen J H, Lin Z W 2021 Chin. Phys. C 45 054002Google Scholar

    [44]

    Li Z Y, Cha W M, Tang Z B 2022 Phys. Rev. C 106 064908Google Scholar

    [45]

    杨驰, 陈金辉, 马余刚, 徐庆华 2019 中国科学: 物理学 力学 天文学 49 102008Google Scholar

    Yang C, Chen J H, Ma Y G, Xu Q H 2019 Sci. Sin. Phys. Mech. Astron. 49 102008Google Scholar

    [46]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) arXiv: 2204.10171

  • 图 1  不同能量下非对心核-核碰撞中Λ, $\bar{{{\Lambda }}}$超子的整体极化测量结果

    Figure 1.  Global polarization of Lambda and anti-Lambda hyperon in non-central nuclear-nuclear collisions at different energies.

    图 2  200 GeV金核-金核碰撞中不同碰撞中心度下Λ, $\bar{{{\Lambda }}}$超子整体极化[7]

    Figure 2.  $ {{\Lambda }} $ and $\bar{{{\Lambda }}}$ global polarization as a function of the collision centrality in Au+Au collisions at $ \sqrt {{S_{{\text{NN}}}}} $ = 200 GeV[7].

    图 3  200 GeV金核-金核碰撞中Λ, $\bar{{{\Lambda }}}$整体极化随赝快度η(a)和横动量pT(b)的变化[7].

    Figure 3.  Polarization of Λ, $ \stackrel{-}{{{\Lambda }}} $ as a function of η (a) and pT (b) for the 20%—60% centrality bin in Au+Au collisions at $ \sqrt {{S_{{\text{NN}}}}} $= 200 GeV[7].

    图 4  200 GeV金核-金核碰撞中Ξ和Ω超子整体极化的测量结果, 以及与Λ结果的比较[9]

    Figure 4.  Global polarization of Ξ and Ω in Au-Au collisions at 200 GeV, and compared with Λ polarization[9].

    图 5  非对心重离子碰撞横平面中速度场和涡旋示意图[37]. z轴方向为束流方向, x-z平面为反应平面

    Figure 5.  A sketch illustrating the system created in a noncentral heavy-ion collision viewed in the transverse plane. Velocity field and expected vorticities are shown, the colliding beams are along the z axis and z-x plane defines the reaction plane.

    图 6  200 GeV金核-金核碰撞20%—60%中心度事例中Λ超子和其反粒子的$ {\left\langle{{\rm{cos}}{\theta }_{{\rm{p}}}^{*}}\right\rangle}^{{\rm{s}}{\rm{u}}{\rm{b}}} $关于$\phi -{\varPsi }_{2}$的依赖[37]

    Figure 6.  $ {\left\langle{{\rm{cos}}{\theta }_{{\rm{p}}}^{*}}\right\rangle}^{{\rm{s}}{\rm{u}}{\rm{b}}} $ of Lambda and anti-Lambda as a function of azimuthal angle $\phi$ relative to the second-order event plane $ {\varPsi }_{2} $ for 20%—60% centrality Au+Au collisions at 200  GeV[37].

    图 7  Λ超子和其反粒子沿束流方向的局域极化在200 GeV金核-金核碰撞及5.02 TeV铅核-铅核碰撞中随中心度的变化[37,38]

    Figure 7.  Centrality dependence of $ {P}_{z, s2} $ averaged for Lambda and anti-Lambda in Pb+Pb collisions at 5.02 TeV and in Au+Au collisions at 200 GeV[37,38].

    图 8  Λ超子和其反粒子沿束流方向的局域极化在20%—50%中心度200 GeV金核-金核碰撞及30%—50%中心度5.02 TeV铅核-铅核碰撞中随横动量的变化[37,38]

    Figure 8.  Transverse momentum dependence of $ {P}_{z, {\rm{s}}2} $ averaged for Lambda and anti-Lambda in Pb+Pb collisions at 5.02 TeV and in Au+Au collisions at 200 GeV[37,38].

    图 9  Λ超子和其反粒子沿束流方向的局域极化在30%—50%中心度5.02 TeV铅核-铅核碰撞中随快度的变化[38]

    Figure 9.  The rapidity dependence of $ {P}_{z, {\rm{s}}2} $ averaged for Lambda and anti-Lambda in Pb+Pb collisions at 5.02 TeV in the centrality interval of 30%—50% [38].

    图 10  相对论重离子碰撞中ϕ和K*0信号分布示例 (a)和(b) θ*空间积分分布; (c)和(d) θ*微分分布[6]

    Figure 10.  Example of ϕ and K*0 distributions in Au+Au collisions at relativistic heavy-ion collider: (a) and (b) Examples of invariant mass distributions; (c) and (d) the extracted yields as a function of cosθ*[6].

    图 11  束流能量扫描实验中和高统计量200 GeV金核-金核碰撞中ϕ介子ρ00随其横向动量的分布[6]

    Figure 11.  ρ00 as a function of transverse momentum for ϕ-meson for beam-energy scan energies and for the high statistics 200 GeV data[6].

    图 12  束流能量扫描实验中和高统计量200 GeV金核-金核碰撞中K*0介子ρ00随其横向动量的分布[6]

    Figure 12.  ρ00 as a function of transverse momentum for K*0 for beam-energy scan energies and for the high statistics 200 GeV data[6].

    图 13  相对论重离子碰撞中ϕ和K*0整体极化测量结果[6]. 图中实心数据点来自STAR测量, 空心点是从ALICE实验中选出和STAR数据的动量区间, 中心度区间最接近的测量. 红色实心线是π介子场局域涨落理论对实验数据的拟合, 红色虚线则是该拟合外延到LHC能区[41]

    Figure 13.  Measurements of ϕ and K*0 global spin alignment in heavy-ion collisions[6]. Solid points are data from STAR measurement, open symbols indicate ALICE results with the pT bin nearest to the mean pT for the 1.0–5.0 GeV/c range assumed for each meson in the STAR analysis. The red solid line is the fitting of the local fluctuation theory of the π meson field to the experimental data, and the red dotted line is the extension of the fitting to the LHC energy region [41].

    图 14  重离子碰撞中ϕ和K*0介子ρ00随碰撞系统中心度的分布,对于ϕ介子的测量也检验了一阶反应平面分析方法[6]

    Figure 14.  ρ00 as a function of centrality for ϕ and K*0, and for the ϕ meson analysis, results from first order event plane are also carried out for cross check[6].

  • [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301; 96 039901(E)

    [2]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [3]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2007 Phys. Rev. C 76 024915; 95 039906(E)

    [4]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration) 2008 Phys. Rev. C 77 061902(R)

    [5]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2017 Nature 548 62Google Scholar

    [6]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2023 Nature 614 244Google Scholar

    [7]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2018 Phys. Rev. C 98 014910Google Scholar

    [8]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) 2020 Phys. Rev. C 101 044611; 105 029902

    [9]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. Lett. 126 162301Google Scholar

    [10]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2021 Phys. Rev. C 104 L061901Google Scholar

    [11]

    Yassine R, Arnold O, Becker M, et al. (HADES Collaboration). 2022 Phys. Lett. B 835 137506Google Scholar

    [12]

    Pang L G, Petersen H, Wang Q, Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [13]

    Li H, Pang L G, Wang Q, Xia X L 2017 Phys. Rev. C 96 054908Google Scholar

    [14]

    Sun Y, Ko C M 2017 Phys. Rev. C 96 024906Google Scholar

    [15]

    Karpenko I, Becattini F 2017 Eur. Phys. J. C 77 213Google Scholar

    [16]

    Vitiuk O, Bravina L, Zabrodin E, 2020 Phys. Lett. B 803 135298Google Scholar

    [17]

    Guo Y, Liao J, Wang E, Xing H, Zhang H 2021 Phys. Rev. C 104 L041902Google Scholar

    [18]

    Ivanov Y 2021 Phys. Rev. C 103 L031903Google Scholar

    [19]

    Deng X G, Huang X G, Ma Y G, Zhang S 2020 Phys. Rev. C 101 064908Google Scholar

    [20]

    Wei D X, Deng W T, Huang X G 2019 Phys. Rev. C 99 014905Google Scholar

    [21]

    Liang Z T, Song J, Upsal I Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [22]

    Deng X G, Huang X G, Ma Y G 2022 Phys. Lett. B 835 137560Google Scholar

    [23]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005; 105 099903(E)

    [24]

    Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar

    [25]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2205.15689

    [26]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N arXiv: 2206.05868

    [27]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar

    [28]

    Lin, Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [29]

    Shao T H, Chen J H, Ko C M, Sun K J, Xu Z B 2020 Chin. Phys. C 44 114001Google Scholar

    [30]

    Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar

    [31]

    Chen J H, Keane D, Ma Y G, Tang A H, Xu Z B 2018 Phys. Rept. 760 1Google Scholar

    [32]

    Wang X N 2023 Nucl. Sci. Tech. 34 15Google Scholar

    [33]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501Google Scholar

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501Google Scholar

    [34]

    Workman R L et al. (Particle Data Group). 2022 PTEP 2022 083C01

    [35]

    Poskanzer A M, Voloshin S A 1998 Phys. Rev. C 58 1671Google Scholar

    [36]

    Becattini F, Karpenko I 2018 Phys. Rev. Lett. 120 012302Google Scholar

    [37]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [38]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2022 Phys. Rev. Lett. 128 172005Google Scholar

    [39]

    Fu B C, Liu S, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [40]

    Tang A H, Tu B, Zhou C S 2018 Phys. Rev. C 98 044907Google Scholar

    [41]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration). 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [42]

    盛欣力, 梁作堂, 王群 2023 物理学报 72 072502Google Scholar

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. 72 072502Google Scholar

    [43]

    Shen D Y, Chen J H, Lin Z W 2021 Chin. Phys. C 45 054002Google Scholar

    [44]

    Li Z Y, Cha W M, Tang Z B 2022 Phys. Rev. C 106 064908Google Scholar

    [45]

    杨驰, 陈金辉, 马余刚, 徐庆华 2019 中国科学: 物理学 力学 天文学 49 102008Google Scholar

    Yang C, Chen J H, Ma Y G, Xu Q H 2019 Sci. Sin. Phys. Mech. Astron. 49 102008Google Scholar

    [46]

    Acharya S, AdamováD, Adhya S P, et al. (ALICE Collaboration) arXiv: 2204.10171

  • [1] Xie Zhen, Li Jing-Xing, Zheng Hua, Zhang Wen-Chao, Zhu Li-Lin, Liu Xing-Quan, Tan Zhi-Guang, Zhou Dai-Mei, Bonasera Aldo. Midrapidity average transverse momentum of identified charged particles in high-energy heavy-ion collisions. Acta Physica Sinica, 2024, 73(18): 181201. doi: 10.7498/aps.73.20240905
    [2] Liu He, Chu Peng-Cheng. Elliptic flow splitting of charged pions in relativistic heavy-ion collisions. Acta Physica Sinica, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [3] Pu Shi, Xiao Bo-Wen, Zhou Jian, Zhou Ya-Jin. Coherent photons induced high energy reactions in ultraperipheral heavy ion collisions. Acta Physica Sinica, 2023, 72(7): 072503. doi: 10.7498/aps.72.20230074
    [4] Jiang Ze-Fang, Wu Xiang-Yu, Yu Hua-Qing, Cao Shan-Shan, Zhang Ben-Wei. The direct flow of charged particles and the global polarization of hyperons in 200 AGeV Au+Au collisions at RHIC. Acta Physica Sinica, 2023, 72(7): 072504. doi: 10.7498/aps.72.20222391
    [5] Lin Shu, Tian Jia-Yuan. Medium correction to gravitational form factors. Acta Physica Sinica, 2023, 72(7): 071201. doi: 10.7498/aps.72.20222473
    [6] Ruan Li-Juan, Xu Zhang-Bu, Yang Chi. Global polarization of hyperons and spin alignment of vector mesons in quark matters. Acta Physica Sinica, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [7] Sheng Xin-Li, Liang Zuo-Tang, Wang Qun. Global spin alignment of vector mesons in heavy ion collisions. Acta Physica Sinica, 2023, 72(7): 072502. doi: 10.7498/aps.72.20230071
    [8] Gao Jian-Hua, Huang Xu-Guang, Liang Zuo-Tang, Wang Qun, Wang Xin-Nian. Spin-orbital coupling in strong interaction and global spin polarization. Acta Physica Sinica, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [9] Hou Hai-Yan, Yao Hui, Li Zhi-Jian, Nie Yi-Hang. Valley and spin polarization manipulated by electric field in magnetic silicene superlattice. Acta Physica Sinica, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [10] Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [11] Liu Jian-Ye, Hao Huan-Feng, Zuo Wei, Li Xi-Guo. Medium effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, 2008, 57(4): 2136-2140. doi: 10.7498/aps.57.2136
    [12] Bian Bao-An, Zhou Hong-Yu, Zhang Feng-Shou. Symmetry energy and isospin effects of threshold energy of radial flow in heavy ion collisions. Acta Physica Sinica, 2007, 56(3): 1334-1338. doi: 10.7498/aps.56.1334
    [13] Zhang Fang, Zuo Wei, Yong Gao-Chan. Probing the high density behavior of the symmetry energy by using the neutron-proton differential flow. Acta Physica Sinica, 2006, 55(11): 5769-5773. doi: 10.7498/aps.55.5769
    [14] Liu Jian-Ye, Xing Yong-Zhong, Guo Wen-Jun. Entrance channel effects on the role of isospin-dependent momentum interaction in isospin fractionation in heavy ion collisions. Acta Physica Sinica, 2006, 55(1): 91-97. doi: 10.7498/aps.55.91
    [15] Liu Jian-Ye, Guo Wen-Jun, Xing Yong-Zhong, Lee Xi-Guo, Zuo Wei. Nuclear reaction dynamics induced by halo-nuclei at intermediate energy heavy ion collisions. Acta Physica Sinica, 2006, 55(3): 1068-1076. doi: 10.7498/aps.55.1068
    [16] Yong Gao-Chan, Li Bao-An, Chen Lie-Wen, Zuo Wei. Flipped symmetry potential in heavy-ion collisions. Acta Physica Sinica, 2006, 55(10): 5166-5171. doi: 10.7498/aps.55.5166
    [17] Guo Wen-Jun, Liu Jian-Ye, Xing Yong-Zhong. The isospin effect of momentum-dependent interaction in heavy ion collisions. Acta Physica Sinica, 2005, 54(7): 3082-3086. doi: 10.7498/aps.54.3082
    [18] Jiang Zhi-Jin. The study of centrality dependence of rapidity densities of charged-multiplicity. Acta Physica Sinica, 2004, 53(4): 1020-1022. doi: 10.7498/aps.53.1020
    [19] XI JIN-HUA, WU LI-JIN. EFFECTS OF THE CORE POLARIZATIONS ON THE HYPER FINE INTERACTION OF THE TRIPLET (3d2)3P STATES OF ScII. Acta Physica Sinica, 1992, 41(3): 370-378. doi: 10.7498/aps.41.370
    [20] HOU QING, LI JIA-MING. ELASTIC SCATTERING OF SPIN ELECTRON BY Xe ATOM. Acta Physica Sinica, 1992, 41(9): 1424-1430. doi: 10.7498/aps.41.1424
Metrics
  • Abstract views:  4942
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  28 December 2022
  • Accepted Date:  30 January 2023
  • Available Online:  17 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回