Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in aqueous akali-metal-ion batteries at low temperatures

Han Shuai Guo Qiu-Bo Lu Ya-Xiang Chen Li-Quan Hu Yong-Sheng

Citation:

Recent progress in aqueous akali-metal-ion batteries at low temperatures

Han Shuai, Guo Qiu-Bo, Lu Ya-Xiang, Chen Li-Quan, Hu Yong-Sheng
PDF
HTML
Get Citation
  • Aqueous alkali-metal-ion batteries are a popular frontier research area, expected to apply for large-scale energy storage due to their high safety, low cost, and environmental friendliness. Depending on diversified social development, batteries ought to function in various ambient, including polar regions and high-altitude locales. Delivering excellent electrochemical performance at low temperatures is crucial to develop aqueous alkali-metal-ion batteries. This review summarizes the representative research progress in the field of aqueous low-temperature alkali-metal-ion batteries in recent years, based on the subjects of electrolyte, electrode, and interface. Firstly, we discussed the challenges of aqueous alkali-metal-ion batteries operated at low temperatures and the corresponding failure mechanisms. At subzero temperatures, aqueous alkali-metal-ion batteries couldn't work or exhibit little capacity, arising from the frozen electrolytes, electrode materials with slow kinetics, and huge interface impedances, which seriously limits their wide application in low-temperature conditions. Then, combined with the latest research work, various strategies have been investigated to improve the electrochemical performance of batteries at low temperatures. To date, the strategies for reducing the freezing point of electrolytes have primarily focused on breaking H-bonds between free water molecules by increasing salt concentration, adding organic/inorganic additives, and using hydrogel as electrolytes. In terms of electrodes, the related studies have concentrated on regulating the structure and morphology of electrodes, introducing the dual ion battery mechanism, and using organic materials and Zn electrodes to alleviate the slow ion dynamics of electrodes. In addition, adding appropriate organic solvents that can generate protective layers with low interface impedance on the electrode surface in the electrolyte can also improve the low-temperature performance of aqueous alkali-metal-ion batteries. Finally, we evaluated multi-dimensionally all strategies, expected to provide a comprehensive reference and point out the direction for the further improvement and practical application of the aqueous alkali-metal-ion batteries at low temperatures.
      Corresponding author: Lu Ya-Xiang, yxlu@iphy.ac.cn ; Hu Yong-Sheng, yshu@iphy.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 2212022), the National Natural Science Foundation of China (Grant Nos. 51725206, 52122214, 52072403), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020006), and the Jiangsu Provincial Carbon Peak and Neutrality Innovation Program (Industry Tackling on Prospect and Key Technology), China (Grant No. BE2022002-5).
    [1]

    Dunn B, Kamath H, Tarascon J M 2011 Science 334 928Google Scholar

    [2]

    Larcher D, Tarascon J M 2015 Nat. Chem. 7 19Google Scholar

    [3]

    Goodenough J B 2013 Acc. Chem. Res. 46 1053Google Scholar

    [4]

    Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F 2016 J. Power Sources 306 178Google Scholar

    [5]

    Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K 2014 Chem. Rev. 114 11788Google Scholar

    [6]

    Tang W, Zhu Y, Hou Y, Liu L, Wu Y, Loh K P, Zhang H, Zhu K 2013 Energy Environ. Sci. 6 2093Google Scholar

    [7]

    Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K 2015 Science 350 938Google Scholar

    [8]

    Yue J, Suo L 2021 Energy Fuels 35 9228Google Scholar

    [9]

    Zhang S, Xu K, Jow T 2003 J. Power Sources 115 137Google Scholar

    [10]

    Gao H N, Zhao Z G, Cai Y D, Zhou J J, Hua W D, Chen L, Wang L, Zhang J Q, Han D, Liu M J, Jiang L 2017 Nat. Commun. 8 15911Google Scholar

    [11]

    Jiang L, Lu Y, Zhao C, Liu L, Zhang J, Zhang Q, Shen X, Zhao J, Yu X, Li H, Huang X, Chen L, Hu Y S 2019 Nat. Energy 4 495Google Scholar

    [12]

    Wang H, Zhang H, Cheng Y, Feng K, Li X, Zhang H 2018 Electrochim. Acta 278 279Google Scholar

    [13]

    Zhang Y, Xu J, Li Z, Wang Y, Wang S, Dong X, Wang Y 2022 Sci. Bull. 67 161Google Scholar

    [14]

    Zhu K J, Sun Z Q, Jin T, Chen X C, Si Y C, Li H X, Jiao L F 2022 Batteries Supercaps 5 202200308

    [15]

    Nian Q, Wang J, Liu S, Sun T, Zheng S, Zhang Y, Tao Z, Chen J 2019 Angew. Chem. Int. Ed. 58 16994Google Scholar

    [16]

    Ma Z, Chen J, Vatamanu J, Borodin O, Bedrov D, Zhou X, Zhang W, Li W, Xu K, Xing L 2022 Energy Storage Materials 45 903

    [17]

    Liu T, Liu K-T, Wang J, Ji X, Lan P, Mu Z, Pan Y, Cheng S, Liu M 2021 Energy Storage Materials 41 133

    [18]

    Hu Y, Shi R W, Ren Y Y, Peng W S, Feng C D, Zhao Y, Zheng S J, Li W Z, Sun Z, Guo J N, Guo S Y, Wang X L, Yan F 2022 Adv. Funct. Mater. 32 2203081Google Scholar

    [19]

    Tron A, Jeong S, Park Y D, Mun J 2019 ACS Sustainable Chem. Eng. 7 14531Google Scholar

    [20]

    Liang G, Gan Z, Wang X, Jin X, Xiong B, Zhang X, Chen S, Wang Y, He H, Zhi C 2021 ACS Nano 15 17717Google Scholar

    [21]

    Zhu K, Sun Z, Li Z, Liu P, Chen X, Jiao L 2022 Energy Storage Mater. 53 523Google Scholar

    [22]

    Sun T, Liu C, Wang J, Nian Q, Feng Y, Zhang Y, Tao Z, Chen J 2020 Nano Res. 13 676Google Scholar

    [23]

    Sun Y, Zhang Y, Xu Z, Gou W, Han X, Liu M, Li CM 2022 ChemSusChem 202201362

    [24]

    Zhu M, Wang X, Tang H, Wang J, Hao Q, Liu L, Li Y, Zhang K, Schmidt O G 2020 Adv. Funct. Mater. 30 1907218Google Scholar

    [25]

    Yan C, Wang Y, Deng X, Xu Y 2022 Nano-Micro Lett. 14 98Google Scholar

    [26]

    Wang M, Li T, Yin Y, Yan J, Zhang H, Li X 2022 Adv. Energy Mater. 12 2200728Google Scholar

    [27]

    Nian Q, Liu S, Liu J, Zhang Q, Shi J, Liu C, Wang R, Tao Z, Chen J 2019 ACS Appl. Energy Mater. 2 4370Google Scholar

    [28]

    Liu S, Lei T, Song Q, Zhu J, Zhu C 2022 ACS Appl. Mater. Interfaces 14 11425Google Scholar

    [29]

    Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta AM, Pietrucci F 2017 Phys. Rev. Lett. 119 245701Google Scholar

    [30]

    Leadbetter A, Ward R, Clark J, Tucker P, Matsuo T, Suga H 1985 J. Chem. Phys. 82 424Google Scholar

    [31]

    Reber D, Kühnel R S, Battaglia C 2019 ACS Mater. Lett. 1 44Google Scholar

    [32]

    Becker M, Kühnel R S, Battaglia C 2019 ChemComm 55 12032Google Scholar

    [33]

    Liu J, Yang C, Chi X, Wen B, Wang W, Liu Y 2022 Adv. Funct. Mater. 32 2106811Google Scholar

    [34]

    Reber D, Borodin O, Becker M, Rentsch D, Thienenkamp J H, Grissa R, Zhao W, Aribia A, Brunklaus G, Battaglia C 2022 Adv. Funct. Mater. 32 2112138Google Scholar

    [35]

    Bi H, Wang X, Liu H, He Y, Wang W, Deng W, Ma X, Wang Y, Rao W, Chai Y, Ma H, Li R, Chen J, Wang Y, Xue M 2020 Adv. Mater. 32 2000074Google Scholar

    [36]

    Zhu K, Li Z, Sun Z, Liu P, Jin T, Chen X, Li H, Lu W, Jiao L 2022 Small 18 2107662Google Scholar

    [37]

    Ao H, Zhao Y, Zhou J, Cai W, Zhang X, Zhu Y, Qian Y 2019 J. Mater. Chem. A 7 18708Google Scholar

    [38]

    Ramanujapuram A, Yushin G 2018 Adv. Energy Mater. 8 1802624Google Scholar

    [39]

    Chen J, Vatamanu J, Xing L, Borodin O, Chen H, Guan X, Liu X, Xu K, Li W 2020 Adv. Energy Mater. 10 1902654Google Scholar

    [40]

    Liu T, Zhang M, Wang Y L, Wang Q Y, Lü C, Liu K X, Suresh S, Yin Y H, Hu Y Y, Li Y S, Liu X B, Zhong X W, Xia B Y, Wu Z P 2018 Adv. Energy Mater. 8 1802349Google Scholar

    [41]

    Lee J, Lee C L, Park K, Kim I D 2014 J. Power Sources 248 1211Google Scholar

    [42]

    Madzvamuse A, Hamenu L, Mohammed L, Ko JM 2018 ChemistrySelect 3 10805Google Scholar

  • 图 1  (a) 近几年与低温水系碱金属离子电池相关的文章数量统计; (b) 水系碱金属离子电池的低温发展策略总结

    Figure 1.  (a) The number of articles related to aqueous alkali-metal-ion batteries at low temperatures in recent years; (b) the strategies for alkali metal-ions batteries at low temperatures.

    图 2  (a) 35 m LiFSI, 25 m LiFSI+10 m LiFTFSI, 25 m LiFSI+10 m LiTFSI的DSC曲线[31]; (b) 25 m LiFSI+10 m LiFTFSI电解液和25 m LiFSI+10 m LiTFSI电解液在0 °C下保存4周后的照片[31]; (c) LiPTFSI, LiOTf及其二元混合物的水溶液的相图[32]; (d) 水/DMSO (χDMSO = 0.30)混合物的DSC曲线(在水溶液中加入摩尔分数为0.3的DMSO)[15]; (e)—(g) 三种全电池在25和–50 ℃的充放电曲线[15]; (h) Na2CoFe(CN)6//AC 全电池在25和–30 ℃下的充放电曲线[36]; (i) LTP@C //PIL-OH 水凝胶//AC 全电池在不同温度下的充放电曲线[18]; (j) 全电池连续在不同温度下循环的容量变化[18]

    Figure 2.  (a) DSC curves of different electrolytes (35 m LiFSI, 25 m LiFSI+10 m LiFTFSI, 25 m LiFSI+10 m LiTFSI) between 60 and –120 ℃[31]; (b) the optical photographs of 25 m LiFSI+10 m LiFTFSI and 25 m LiFSI+10 m LiTFSI after storage at 0 ℃ for 4 weeks[31]; (c) the phase diagrams of aqueous solutions of LiPTFSI, LiOTf, and their binary mixtures[32]; (d) the DSC result of χDMSO = 0.3 electrolyte solvent[15]; (e)–(g) GCD curves of different batteries at 25 and –50 ℃[15]; (h) the GCD curves of the Na2CoFe(CN)6//AC full cells at 25 and –30 ℃ for different cycles[36]; (i) the GCD curves of LTP@C //PIL-OH hydrogel//AC full cells at different temperatures[18]; (j) the capacity change for the full cells cycled at different temperatures continuously[18]

    图 3  (a) α-V2O5和δ-K0.5V2O5 (KVO) 两种电极的CV曲线[20]; (b)—(d) δ-K0.5V2O5 (KVO) 电极的三种可能的离子扩散路径示意图[20]; (e)—(g) 三种路径对应的K+传输势垒[20]; (h) α-V2O5和δ0-V2O5 (KVO) 两种电极的电子结构[20]; (i) 不同温度下的δ-K0.5V2O5 (KVO)//PTCDI 软包全电池充放电曲线[20]

    Figure 3.  (a) The CV curves of α-V2O5 and reconstructed δ-K0.5V2O5 (KVO) electrodes[20]; (b)–(d) the schematics of three possible pathways for K-ion diffusion[20]; (e)–(g) the transport energy batteries of three kinds of K+ pathways[20]; (h) the electronic structure results of α-V2O5 and δ0-V2O5 (KVO) electrodes from DOS calculating[20]; (i) the GCD curves of δ-K0.5V2O5 (KVO)//PTCDI full batteries at different temperatures[20].

    图 4  (a) PT电极的晶体结构[13]; (b) PT电极在不同电流密度下的充放电曲线[13]; (c) NiHCF//17 m NaClO4//PT全电池在不同电流密度下的充放电曲线[13]; (d) PANI//3 ZC6 LC//Zn全电池在–30和–50 ℃下的充放电曲线[25]; (e) PANI//Zn全电池在–50 ℃下的循环性能[25]

    Figure 4.  (a) The crystal structure of the PT electrode[13]; (b) the GCD curves of PT electrode at different current densities[13]; (c) the GCD curves of NiHCF//17 m NaClO4//PT full cells at different current densities[13]; (d) the GCD curves of PANI//3 ZC6 LC//Zn full cells at –30 and –50 ℃[25]; (e) the cycle performance of PANI//Zn full cells at –50 ℃[25].

    图 5  (a) Ni(OH)2//2 m NaClO4//NaTi2(PO4)3(NTP@C)双离子电池机理示意图[27]; (b) Ni(OH)2//NaTi2(PO4)3(NTP@C)全电池在不同电流密度下的充放电曲线[27]; (c) Ni(OH)2//NaTi2(PO4)3(NTP@C)全电池在不同温度下的循环性能[27]; (d) PC//1 m TPABr+9.1 m LiBr//NDPI全电池机理图[26]; (e) PC电极在室温下的充放电曲线[26]; (f) PC电极在低温下的倍率性能[26]; (g) PC//1 m TPABr+9.1 m LiBr//NDPI全电池在不同温度下的充放电曲线[26]; (h) PC//1 m TPABr+9.1 m LiBr//NDPI全电池的循环性能[26]

    Figure 5.  (a) The schematic illustration of Ni(OH)2//2 m NaClO4//NaTi2(PO4)3(NTP@C) full cell[27]; (b) the GCD curves of Ni(OH)2//NaTi2(PO4)3(NTP@C) full cells at different current densities[27]; (c) the cycle performances of Ni(OH)2//NaTi2(PO4)3(NTP@C) full cells at different temperatures[27]; (d) the schematic illustration of PC//1 m TPABr+9.1 m LiBr//NDPI full cell[26]; (e) the GCD curves of PC electrodes at room temperature[26]; (f) the rate performances of PC electrodes from –60 to –20 ℃[26]; (g) the GCD curves of PC//1 m TPABr+9.1 m LiBr//NDPI full cells at different temperatures[26]; (h) the cycle performances of PC//1 m TPABr+9.1 m LiBr//NDPI full cells[26].

    图 6  (a) LiCoO2电极在不同电解液和不同温度下的循环性能[38]; (b)—(d) 有机电解液和水系电解液的阻抗对比[38]

    Figure 6.  (a) The cycle performances of LiCoO2 electrodes in different states[38]; (b)–(d) the impedances comparison between aqueous (sat. LiCl) and organic (1 M LiPF6 in 1:1 EC: DEC) electrolyte systems[38].

    图 7  (a) LiMn2O4(LMO)//Li4Ti5O12(LTO)全电池在BSiS-D0.28和BSiS-A0.5电解液中的电化学性能[39]; (b)—(d) RE, RSEIRCT的阻抗拟合结果[39]

    Figure 7.  (a) The cycle performances of LiMn2O4(LMO)//Li4Ti5O12(LTO) full cells tested in different electrolytes[39]; (b)–(d) fitting results of RE, RSEI, and RCT obtained from EIS[39].

    图 8  (a) Na3V2(PO4)3 //10 m NaClO4–0.17 m Zn(CH3COO)2–2 wt% VC//Zn全电池的机理示意图[28]; (b) 两种电解液的Na3V2(PO4)3//Zn全电池在–10 ℃下循环前后的阻抗结果[28]; (c) Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2–2 wt% VC//Zn全电池低温下的倍率性能[28]; (d) Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2-2 wt% VC//Zn全电池在–10 ℃的循环性能[28]

    Figure 8.  (a) The schematic illustration of Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2-2 wt% VC//Zn full cell[28]; (b) the EIS results of Na3V2(PO4)3//Zn full batteries before and after 30 cycles at –10 ℃ in the two electrolytes[28]; (c) the rate performances of Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2-2 wt% VC//Zn full cells at low temperatures[28]; (d) the cycle performances of Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2-2 wt% VC//Zn full cells at –10 ℃[28].

  • [1]

    Dunn B, Kamath H, Tarascon J M 2011 Science 334 928Google Scholar

    [2]

    Larcher D, Tarascon J M 2015 Nat. Chem. 7 19Google Scholar

    [3]

    Goodenough J B 2013 Acc. Chem. Res. 46 1053Google Scholar

    [4]

    Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F 2016 J. Power Sources 306 178Google Scholar

    [5]

    Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K 2014 Chem. Rev. 114 11788Google Scholar

    [6]

    Tang W, Zhu Y, Hou Y, Liu L, Wu Y, Loh K P, Zhang H, Zhu K 2013 Energy Environ. Sci. 6 2093Google Scholar

    [7]

    Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K 2015 Science 350 938Google Scholar

    [8]

    Yue J, Suo L 2021 Energy Fuels 35 9228Google Scholar

    [9]

    Zhang S, Xu K, Jow T 2003 J. Power Sources 115 137Google Scholar

    [10]

    Gao H N, Zhao Z G, Cai Y D, Zhou J J, Hua W D, Chen L, Wang L, Zhang J Q, Han D, Liu M J, Jiang L 2017 Nat. Commun. 8 15911Google Scholar

    [11]

    Jiang L, Lu Y, Zhao C, Liu L, Zhang J, Zhang Q, Shen X, Zhao J, Yu X, Li H, Huang X, Chen L, Hu Y S 2019 Nat. Energy 4 495Google Scholar

    [12]

    Wang H, Zhang H, Cheng Y, Feng K, Li X, Zhang H 2018 Electrochim. Acta 278 279Google Scholar

    [13]

    Zhang Y, Xu J, Li Z, Wang Y, Wang S, Dong X, Wang Y 2022 Sci. Bull. 67 161Google Scholar

    [14]

    Zhu K J, Sun Z Q, Jin T, Chen X C, Si Y C, Li H X, Jiao L F 2022 Batteries Supercaps 5 202200308

    [15]

    Nian Q, Wang J, Liu S, Sun T, Zheng S, Zhang Y, Tao Z, Chen J 2019 Angew. Chem. Int. Ed. 58 16994Google Scholar

    [16]

    Ma Z, Chen J, Vatamanu J, Borodin O, Bedrov D, Zhou X, Zhang W, Li W, Xu K, Xing L 2022 Energy Storage Materials 45 903

    [17]

    Liu T, Liu K-T, Wang J, Ji X, Lan P, Mu Z, Pan Y, Cheng S, Liu M 2021 Energy Storage Materials 41 133

    [18]

    Hu Y, Shi R W, Ren Y Y, Peng W S, Feng C D, Zhao Y, Zheng S J, Li W Z, Sun Z, Guo J N, Guo S Y, Wang X L, Yan F 2022 Adv. Funct. Mater. 32 2203081Google Scholar

    [19]

    Tron A, Jeong S, Park Y D, Mun J 2019 ACS Sustainable Chem. Eng. 7 14531Google Scholar

    [20]

    Liang G, Gan Z, Wang X, Jin X, Xiong B, Zhang X, Chen S, Wang Y, He H, Zhi C 2021 ACS Nano 15 17717Google Scholar

    [21]

    Zhu K, Sun Z, Li Z, Liu P, Chen X, Jiao L 2022 Energy Storage Mater. 53 523Google Scholar

    [22]

    Sun T, Liu C, Wang J, Nian Q, Feng Y, Zhang Y, Tao Z, Chen J 2020 Nano Res. 13 676Google Scholar

    [23]

    Sun Y, Zhang Y, Xu Z, Gou W, Han X, Liu M, Li CM 2022 ChemSusChem 202201362

    [24]

    Zhu M, Wang X, Tang H, Wang J, Hao Q, Liu L, Li Y, Zhang K, Schmidt O G 2020 Adv. Funct. Mater. 30 1907218Google Scholar

    [25]

    Yan C, Wang Y, Deng X, Xu Y 2022 Nano-Micro Lett. 14 98Google Scholar

    [26]

    Wang M, Li T, Yin Y, Yan J, Zhang H, Li X 2022 Adv. Energy Mater. 12 2200728Google Scholar

    [27]

    Nian Q, Liu S, Liu J, Zhang Q, Shi J, Liu C, Wang R, Tao Z, Chen J 2019 ACS Appl. Energy Mater. 2 4370Google Scholar

    [28]

    Liu S, Lei T, Song Q, Zhu J, Zhu C 2022 ACS Appl. Mater. Interfaces 14 11425Google Scholar

    [29]

    Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta AM, Pietrucci F 2017 Phys. Rev. Lett. 119 245701Google Scholar

    [30]

    Leadbetter A, Ward R, Clark J, Tucker P, Matsuo T, Suga H 1985 J. Chem. Phys. 82 424Google Scholar

    [31]

    Reber D, Kühnel R S, Battaglia C 2019 ACS Mater. Lett. 1 44Google Scholar

    [32]

    Becker M, Kühnel R S, Battaglia C 2019 ChemComm 55 12032Google Scholar

    [33]

    Liu J, Yang C, Chi X, Wen B, Wang W, Liu Y 2022 Adv. Funct. Mater. 32 2106811Google Scholar

    [34]

    Reber D, Borodin O, Becker M, Rentsch D, Thienenkamp J H, Grissa R, Zhao W, Aribia A, Brunklaus G, Battaglia C 2022 Adv. Funct. Mater. 32 2112138Google Scholar

    [35]

    Bi H, Wang X, Liu H, He Y, Wang W, Deng W, Ma X, Wang Y, Rao W, Chai Y, Ma H, Li R, Chen J, Wang Y, Xue M 2020 Adv. Mater. 32 2000074Google Scholar

    [36]

    Zhu K, Li Z, Sun Z, Liu P, Jin T, Chen X, Li H, Lu W, Jiao L 2022 Small 18 2107662Google Scholar

    [37]

    Ao H, Zhao Y, Zhou J, Cai W, Zhang X, Zhu Y, Qian Y 2019 J. Mater. Chem. A 7 18708Google Scholar

    [38]

    Ramanujapuram A, Yushin G 2018 Adv. Energy Mater. 8 1802624Google Scholar

    [39]

    Chen J, Vatamanu J, Xing L, Borodin O, Chen H, Guan X, Liu X, Xu K, Li W 2020 Adv. Energy Mater. 10 1902654Google Scholar

    [40]

    Liu T, Zhang M, Wang Y L, Wang Q Y, Lü C, Liu K X, Suresh S, Yin Y H, Hu Y Y, Li Y S, Liu X B, Zhong X W, Xia B Y, Wu Z P 2018 Adv. Energy Mater. 8 1802349Google Scholar

    [41]

    Lee J, Lee C L, Park K, Kim I D 2014 J. Power Sources 248 1211Google Scholar

    [42]

    Madzvamuse A, Hamenu L, Mohammed L, Ko JM 2018 ChemistrySelect 3 10805Google Scholar

  • [1] Liu Qiao, Huang Jia-Chen, Wang Hao, Deng Ya-Jun. Structure and migration mechanism of thin liquid film in vicinity of advancing contact line. Acta Physica Sinica, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] Jiang Mei-Yan, Wang Ping, Chen Ai-Sheng, Chen Cheng-Ke, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes. Acta Physica Sinica, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [3] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [4] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [5] Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang. Stretchable supercapacitors: Electrodes, electrolytes, and devices. Acta Physica Sinica, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [6] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [7] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [8] Liu Hua-Yan, Fan Yue, Kang Zhen-Feng, Xu Yan-Bin, Bo Qing-Rui, Ding Tie-Zhu. Preparation and characterization of the superlattice (Sm-doped ceria/yttria-stabilized zirconia)N electrolyte film. Acta Physica Sinica, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [9] Liu Bo-Fei, Bai Li-Sha, Zhang De-Kun, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan. Effect of a-Si:H interface buffer layer on the performance of hydrogenated amorphous silicon germanium thin film solar cell. Acta Physica Sinica, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [10] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [11] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [12] Zhang Xian-Gang, Zong Ya-Ping, Wang Ming-Tao, Wu Yan. A physical model to express grain boundaries in grain growth simulation by phase-field method. Acta Physica Sinica, 2011, 60(6): 068201. doi: 10.7498/aps.60.068201
    [13] Medvedeva I, Chen Shun-Sheng, Huang Chang, Wang Rui-Long, Yang Chang-Ping. The electrical transport properties of Ag/Nd0.7Sr0.3MnO3 ceramic interface. Acta Physica Sinica, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [14] Yu Huang-Zhong, Wen Yuan-Xin. Influence of the thickness and cathode material on the performance of the polymer solar cell. Acta Physica Sinica, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [15] Liu Gui-Li, Yang Zhong-Hua, Fang Ge-Liang. Electronic theory study of interface characteristic of magnesium/carbon nanotube with nickel. Acta Physica Sinica, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [16] Xu Jun, Huang Yu-Jian, Ding Shi-Jin, Zhang Wei. Influence of Ta and TaN bottom electrodes on electrical performances of MIM capacitors with atomic-layer-deposited HfO2 dielectric. Acta Physica Sinica, 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [17] Yang Hang-Sheng, Xie Ying-Jun. Controlling the interfacial structure of cubic boron nitride thin film prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2007, 56(9): 5400-5407. doi: 10.7498/aps.56.5400
    [18] Liu Gui-Li, Guo Yu-Fu, Li Rong-De. Electronic theory of interface characteristics of ZA27/CNT. Acta Physica Sinica, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [19] Tang Yuan-He, Xie Guang-Yong, Liu Han-Chen, Shao Jian-Bin, Ma Qi, Liu Hui-Ping, Ning Hui, Yang Yu, Yan Cheng-Hai. Study of the interface optical property of bubbles in water based on PIV. Acta Physica Sinica, 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [20] MU WEI-BING, CHEN PAN-XUN. MONTE-CARLO CALCULATION OF X-RAY DOSE ENHANCEMENT FACTOR NEARBY HIGH Z METAL CONNECTED INTERFACE. Acta Physica Sinica, 2001, 50(2): 189-192. doi: 10.7498/aps.50.189
Metrics
  • Abstract views:  6651
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2023
  • Accepted Date:  10 January 2023
  • Available Online:  04 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回